Skip to main content

Advertisement

Log in

Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this technical note, evolutions of the particle size distribution, particle breakage, volume deformation and input work of carbonate sands with varying relative densities were investigated through performing a series of one-dimensional compression tests. Loading stress levels ranged from 0.1 to 3.2 MPa. It was found that the initial relative density could greatly affect the magnitude of particle size distribution, particle breakage, volume deformation and input work. Particularly, it was observed that the specimen at a lower relative density underwent much more particle breakage than that at a higher relative density. This could be attributed to the change of the coordination number with the initial density. However, a unique linear relationship between the particle breakage and input work per volume could be obtained, which is independent of the initial relative density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

I D :

Relative density

F(d):

Particle size distribution function

\(d\) :

Grain diameter (mm)

\(d_{\text{M}}\) :

Maximum grain diameter (mm)

α :

Fractal dimension

k ɛ :

Fitting parameter

p a :

Atmospheric pressure (MPa)

σ v :

Vertical stress (MPa)

\(B_{\text{r}}\) :

Relative breakage index (%)

\(B_{\text{p}}\) and \(B_{\text{t}}\) :

Breakage potential and total breakage, respectively

\(W_{\text{in}}\) :

Input work per volume (J/mm3)

χ B and k B :

Material constants

\(k_{\text{B}}\) and k W :

Material constants

References

  1. Alikarami R, Ando E, Gkiousas-Kapnisis M et al (2015) Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotech 10:15–30

    Article  Google Scholar 

  2. Cheng YP, Nakata Y, Bolton MD (2003) Discrete element simulation of crushable soil. Geotechnique 53:633–641

    Article  Google Scholar 

  3. Coop MR (1990) The mechanics of uncemented carbonate sands. Geotechnique 40:607–626

    Article  Google Scholar 

  4. Coop MR, Atkinson JH (1993) The mechanics of cemented carbonate sands. Geotechnique 43:53–67

    Article  Google Scholar 

  5. Coop MR, Sorensen KK, Bodas Freitas T et al (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54:157–163

    Article  Google Scholar 

  6. Daouadji A, Hicher P-Y (2010) An enhanced constitutive model for crushable granular materials. Int J Numer Anal Met 34:555–580

    MATH  Google Scholar 

  7. Einav I (2007) Breakage mechanics—Part I: theory. J Mech Phys Solids 55:1274–1297

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang J, Xu S, Hu S (2013) Effects of grain size and gradation on the dynamic responses of quartz sands. Int J Impact Eng 59:1–10

    Article  Google Scholar 

  9. Huang J, Xu S, Hu S (2014) Influence of particle breakage on the dynamic compression responses of brittle granular materials. Mech Mater 68:15–28

    Article  Google Scholar 

  10. Huang J, Xu S, Hu S (2015) The role of contact friction in the dynamic breakage behavior of granular materials. Granul Matter 17:111–120

    Article  Google Scholar 

  11. Indraratna B, Lackenby J, Christie D (2005) Effect of confining pressure on the degradation of ballast under cyclic loading. Geotechnique 55:325–328

    Article  Google Scholar 

  12. Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1:16–23

    Article  Google Scholar 

  13. Liu M, Gao Y, Liu H (2014) An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. Int J Numer Anal Met 38:935–960

    Article  Google Scholar 

  14. Lobo-Guerrero S, Vallejo L (2006) Modeling granular crushing in ring shear tests: experimental and numerical analyses. Soils Found 46:147–157

    Article  Google Scholar 

  15. Lobo-Guerrero S, Vallejo LE (2006) Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granul Matter 8:195–204

    Article  Google Scholar 

  16. Luzzani L, Coop MR (2002) On the relationship between particle breakage and the critical state of sands. Soils Found 42:71–82

    Article  Google Scholar 

  17. Mcdowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48:667–679

    Article  Google Scholar 

  18. Miao G, Airey D (2013) Breakage and ultimate states for a carbonate sand. Geotechnique 63:1221–1229

    Article  Google Scholar 

  19. Nimbalkar S, Indraratna B, Dash SK et al (2012) Improved performance of railway ballast under impact loads using shock mats. J Geotech Geoenviron Eng 138:281–294

    Article  Google Scholar 

  20. Shahnazari H, Rezvani R (2013) Effective parameters for the particle breakage of calcareous sands: an experimental study. Eng Geol 159:98–105

    Article  Google Scholar 

  21. Shipton B, Coop MR (2012) On the compression behaviour of reconstituted soils. Soils Found 52:668–681

    Article  Google Scholar 

  22. Wang J, Yan H (2012) DEM analysis of energy dissipation in crushable soils. Soils Found 52:644–657

    Article  Google Scholar 

  23. Xiao Y, Liu H (2017) Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech 17:04016041

    Article  Google Scholar 

  24. Xiao Y, Liu H, Chen Y et al (2014) Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J Eng Mech 140:04014002

    Article  Google Scholar 

  25. Xiao Y, Liu H, Chen Y et al (2015) State-dependent constitutive model for rockfill materials. Int J Geomech 15:04014075

    Article  Google Scholar 

  26. Xiao Y, Liu H, Ding X et al (2016) Influence of particle breakage on critical state line of rockfill material. Int J Geomech 16:04015031

    Article  Google Scholar 

  27. Xiao Y, Liu H, Desai CS et al (2016) Effect of intermediate principal-stress ratio on particle breakage of rockfill material. J Geotech Geoenviron Eng 142:06015017

    Article  Google Scholar 

  28. Xiao Y, Liu H, Xiao P et al (2016) Fractal crushing of carbonate sands under impact loading. Geotech Lett 6:199–204

    Article  Google Scholar 

  29. Yamamuro JA, Bopp PA, Lade PV (1996) One-dimensional compression of sands at high pressures. J Geotech Geoenviron Eng 122:147–154

    Article  Google Scholar 

  30. Zhang X, Baudet BA (2013) Particle breakage in gap-graded soil. Geotech Lett 3:72–77

    Article  Google Scholar 

  31. Zhou M, Song E (2016) A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory. Acta Geotech 11:827–847

    Article  Google Scholar 

  32. Zhou W, Yang L, Ma G et al (2015) Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul Matter 17:497–509

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), The National Science Foundation of China (Grant Nos. 51509024, 51678094) and the Project funded by China Postdoctoral Science Foundation (Grant No. 2016M590864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, H., Chen, Q. et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech. 12, 1177–1184 (2017). https://doi.org/10.1007/s11440-017-0580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0580-y

Keywords

Navigation