An ISA-plasticity-based model for viscous and non-viscous clays

Research Paper

Abstract

The ISA-plasticity is a mathematical platform which allows to propose constitutive models for soils under a wide range of strain amplitudes. This formulation is based on a state variable, called the intergranular strain, which is related to the strain recent history. The location of the intergranular strain can be related to the strain amplitude, information which is used to improve the model for the simulation of cyclic loading. The present work proposes an ISA-plasticity-based model for the simulation of saturated clays and features the incorporation of a viscous strain rate to enable the simulation of the strain rate dependency. The work explains some aspects of the ISA-plasticity and adapts its formulation for clays. At the beginning, the formulation of the model is explained. Subsequently, some comments about its numerical implementation and parameters determination are given. Finally, some simulations are performed to evaluate the model performance with two different clays, namely a Kaolin clay and the Lower Rhine clay. The simulations include monotonic and cyclic tests under oedometric and triaxial conditions. Some of these experiments include the variation of the strain rate to evaluate the viscous component of the proposed model.

Keywords

Clays Constitutive models Cyclic loading ISA-plasticity Viscosity 

References

  1. 1.
    Anderson D, Richart F (1976) Effects of straining on shear modulus of clays. ASCE J Geotech Eng Div 102(9):975–987Google Scholar
  2. 2.
    Argyris J, Faust G, Szimmat J, Warnke P, William K (1974) Recent developments in finite element analyses of prestressed concrete reactor vessels. Nucl Eng Des 28:42–75CrossRefGoogle Scholar
  3. 3.
    Atkinson J, Richardson D, Stallebrass S (1990) Effect of recent stress history on the stiffness of overconsolidated soil. Géotechnique 40(4):531–540CrossRefGoogle Scholar
  4. 4.
    Atkinson, J, Sallfors, G (1991) Experimental determination of stress-strain-time characteristics in laboratory and in situ tests. General report to session 1. In: BGS (ed) 10th European conference on soil mechanics and foundation engineering, vol 3. Florence, pp 915–956Google Scholar
  5. 5.
    Avgerinos V, Potts D, Standing J (2016) The use of kinematic hardening models for predicting tunnelling-induced ground movements in London clay. Géotechnique 66(2):106–120CrossRefGoogle Scholar
  6. 6.
    Bjerrum L (1967) Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17:83–118CrossRefGoogle Scholar
  7. 7.
    Borja R (1992) Generalized creep and stress relaxation model for clays. J Geotech Eng Div ASCE 118(11):1765–1786CrossRefGoogle Scholar
  8. 8.
    Borja R, Kavazanjian E (1985) A constitutive model for the stress–strain-time behaviour of wet clays. Géotechnique 35(3):283–298CrossRefGoogle Scholar
  9. 9.
    Burland J, Simpson B, St John H (1979) Movements around excavations in London Clay, design parameters in geotechnical engineering. In: BGS (ed) VII ECSMFE, vol 1. London, UK, pp13–29Google Scholar
  10. 10.
    Chatterjee S, White D, Randolph M (2012) Numerical simulations of pipe-soil interaction during large lateral movements on clay. Géotechnique 62(8):693–705CrossRefGoogle Scholar
  11. 11.
    Chen J (2017) A monotonic bounding surface critical state model for clays. Acta Geotech 12(1):225–230MathSciNetCrossRefGoogle Scholar
  12. 12.
    Clayton C (2011) Stiffness at small strain: research and practice. Géotechnique 61(1):5–37CrossRefGoogle Scholar
  13. 13.
    Dafalias Y (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112(9):966–987CrossRefGoogle Scholar
  14. 14.
    Ellison K, Soga K, Simpson K (2012) A strain space soil model with evolving stiffness anisotropy. Géotechnique 62:627–641CrossRefGoogle Scholar
  15. 15.
    Fellin W (2013) Extension to Barodesy to model void ratio and stress dependency of the K 0 value. Acta Geotech 8(5):561–565CrossRefGoogle Scholar
  16. 16.
    Fuentes (2014) W Contributions in Mechanical Modelling of Fill Materials. PhD thesis, Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie, Karlsruhe, Heft 179Google Scholar
  17. 17.
    Fuentes W, Hadzibeti M, Triantafyllidis T (2016) Constitutive model for clays under the ISA framework. In: Triantafyllidis T (ed) Holistic simulation of geotechnical installation processes. Lecture notes in applied and computational mechanics, vol 80. Springer International Publishing, Switzerland, pp 115–129Google Scholar
  18. 18.
    Fuentes W, Triantafyllidis T (2013) Hydro-mechanical hypoplastic models for unsaturated soils under isotropic stress conditions. Comput Geotech 51:72–82CrossRefGoogle Scholar
  19. 19.
    Fuentes W, Triantafyllidis T (2015) ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int J Numer Anal Methods Geomech 39(11):1235–1254CrossRefGoogle Scholar
  20. 20.
    Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7(3):177–192CrossRefGoogle Scholar
  21. 21.
    Gudehus G (1979) A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Wittke W (ed) 3rd International conference on numerical methods in geomechanics. Aachen, Germany, pp 1309–1323Google Scholar
  22. 22.
    Hadzibeti M (2016) Formulation and calibration of a viscous ISA model for clays. Master thesis, Karlsruhe Institute of Technology KIT. Institute of Soil Mechanics and Rock Mechanics IBFGoogle Scholar
  23. 23.
    Hardin B, Richart E (1963) Elastic wave velocities in granular soils. J Soil Mech Found Div ASCE 89(SM1):33–65Google Scholar
  24. 24.
    Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373CrossRefGoogle Scholar
  25. 25.
    Hong P, Pereira J, Tang A, Cui Y (2016) A two-surface plasticity model for stiff clay. Acta Geotech 11:871–885CrossRefGoogle Scholar
  26. 26.
    Huang W, Wu W, Sun D, Sloan S (2006) A simple hypoplastic model for normally consolidated clay. Acta Geotech 1(1):15–27CrossRefGoogle Scholar
  27. 27.
    Jiang J, Ling H, Kaliakin V, Zeng X, Hung C (2016) Evaluation of an anisotropic elastoplastic viscoplastic bounding surface model for clays. Acta Geotech. doi: 10.1007/s11440-016-0471-7
  28. 28.
    Karstunen M, Yin Z (2010) Modelling time-dependent behavior of murro test embankment. Géotechnique 60(10):735–749CrossRefGoogle Scholar
  29. 29.
    Kolymbas D (1991) An outline of hypoplasticity. Arch Appl Mech 61(3):143–151MATHGoogle Scholar
  30. 30.
    Kutter B, Sathialingam N (1992) Elastic-viscoplastic modelling of rate-dependent behaviour of clays. Géotechnique 42(3):427–441CrossRefGoogle Scholar
  31. 31.
    Leinenkugel H Deformations- und Festigkeitsverhalten bindiger Erdstoffe. Experimentelle Ergebnisse und ihre physikalische Deutung. PhD thesis, Institut für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Karlsruhe, 1978. Heft 66Google Scholar
  32. 32.
    Manzari M, Akaishi M, Dafalias Y (2002) A simple anisotropic clay plasticity model. Mech Res Commun 29(4):241–245CrossRefMATHGoogle Scholar
  33. 33.
    Manzari M, Papadimitriou A, Dafalias Y (2006) Saniclay: simple anisotropic clay plasticity model. Int J Numer Anal Methods Geomech 30(4):1231–1257MATHGoogle Scholar
  34. 34.
    Masin D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336CrossRefMATHGoogle Scholar
  35. 35.
    Masin D (2006) Hypoplastic models for fine-grained solid. PhD thesis, Charles University, PragueGoogle Scholar
  36. 36.
    Medicus G, Fellin W (2016) An improved version of Barodesy for clay. Acta Geotech. doi: 10.1007/s11440-016-0458-4
  37. 37.
    Niemunis A (2003) Habilitation, monografia 34. Ruhr-University BochumGoogle Scholar
  38. 38.
    Niemunis A, Grandas-Tavera CE, Prada-Sarmiento LF (2009) Anisotropic visco-hypoplasticity. Acta Geotech 4(4):293–314CrossRefGoogle Scholar
  39. 39.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2(4):279–299CrossRefGoogle Scholar
  40. 40.
    Niemunis A, Krieg S (1996) Viscous behaviour of soil under oedometric conditions. Can Geotechn J 33(1):159–168CrossRefGoogle Scholar
  41. 41.
    Norton F (1929) The creep of steel at high temperatures. Mc Graw Hill Book Company, New YorkGoogle Scholar
  42. 42.
    Oka F, Leroueil S, Tavenas F (1989) A constitutive model for natural soft clay with strain softening. Soils Found 29:54–66CrossRefGoogle Scholar
  43. 43.
    Poblete M, Fuentes W, Triantafyllidis T (2016) On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech 11(6):1263–1285CrossRefGoogle Scholar
  44. 44.
    Raude S, Laigle F, Giot R, Fernandes R (2016) A unified thermoplastic/viscoplastic constitutive model for geomaterials. Acta Geotech 11:849–869CrossRefGoogle Scholar
  45. 45.
    Schofield A, Wroth P (1968) Critical state soil mechanics. Mc Graw Hill, LondonGoogle Scholar
  46. 46.
    Seidalinov G, Taiebat M (2014) Bounding surface saniclay plasticity model for cyclic clay behavior. Int J Numer Anal Methods Geomech 38(7):702–724CrossRefGoogle Scholar
  47. 47.
    Shibuya S, Hwang S, Mitachi T (1997) No access elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique 47(3):593–601CrossRefGoogle Scholar
  48. 48.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkMATHGoogle Scholar
  49. 49.
    Simpson B (1992) Retaining structures: displacement and design. Géotechnique 42(4):541–576CrossRefGoogle Scholar
  50. 50.
    Stolle D, Bonnier P, Vermeer P (1999) A soft soil model and experiences with two integration schemes. In: 6th International symposium on numerical models in geomechanics (NUMOG VI). A.A. Balkema, Amsterdam, the Netherlands, pp 123–128Google Scholar
  51. 51.
    Taiebat M, Dafalias Y, Peek R (2010) A destructuration theory and its application to saniclay model. Int J Numer Anal Methods Geomech 34(10):1009–1040MATHGoogle Scholar
  52. 52.
    Tsai C, Mejia L, Meymand P (2014) A strain-based procedure to estimate strength softening in saturated clays during earthquakes. Soil Dyn Earthq Eng 66:191–198CrossRefGoogle Scholar
  53. 53.
    Vermeer P, Neher H (1999) A soft soil model that accounts for creep. In: The plaxis symposium on beyond 2000 in computational geotechnics. Amsterdam, the Netherlands, pp 249–262Google Scholar
  54. 54.
    Vlahos G, Cassidy M, Martin M (2011) Numerical simulation of pushover tests on a model jack-up platform on clay. Géotechnique 61(11):947–960CrossRefGoogle Scholar
  55. 55.
    Weifner T, Kolymbas D (2007) A hypoplastic model for clay and sand. Acta Geotech 2(2):103–112CrossRefGoogle Scholar
  56. 56.
    Whittle A, Kiavvadas M (1994) Formulation of MIT-E3 constitutive model for overconsolidated clays. J Geotech Eng Div ASCE 120(1):173–198CrossRefGoogle Scholar
  57. 57.
    Wichtmann T (2016) Soil behaviour under cyclic loading—experimental observations, constitutive description and applications. Habilitation, Karlsruhe Institute for Technology KIT, Institute of Soil Mechanics and Rock Mechanics IBF. Heft No. 81Google Scholar
  58. 58.
    Wichtmann T (2015) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38. www.rz.uni-karlsruhe.de/~gn97/, 2005
  59. 59.
    Wolffersdorff P (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1(3):251–271CrossRefGoogle Scholar
  60. 60.
    Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862CrossRefMATHGoogle Scholar
  61. 61.
    Yin J, Graham J (1994) Equivalent times one-dimensional viscoplastic modelling of time-dependent stress-strain behaviour of clays. Can Geotech J 31(1):42–52CrossRefGoogle Scholar
  62. 62.
    Yin J, Graham J (1999) Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils. Can Geotech J 36(4):736–745CrossRefGoogle Scholar
  63. 63.
    Yin Z, Jin Y, Shen S, Huang H (2016) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model. Acta Geotech. doi: 10.1007/s11440-016-0486-0

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University del NorteBarranquillaColombia
  2. 2.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of Technology KITKarlsruheGermany

Personalised recommendations