Acta Geotechnica

, Volume 13, Issue 2, pp 329–340 | Cite as

A micro-mechanics-based elastic–plastic model for porous rocks: applications to sandstone and chalk

  • W. Q. Shen
  • J. F. Shao
Research Paper


A micro-mechanics-based elastic–plastic model is proposed to describe mechanical behaviors of porous rock-like materials. The porous rock is considered as a composite material composed of a solid matrix and spherical pores. The effective elastic properties are determined from the classical Mori–Tanaka linear homogenization scheme. The solid matrix verifies a pressure-dependent Mises–Schleicher-type yield criterion. Based on the analytical macroscopic yield criterion previously determined with a nonlinear homogenization procedure (Shen et al. in Eur J Mech A/Solids 49:531–538, 2015), a complete elastic–plastic model is formulated with the determination of a specific plastic hardening law and plastic potential. The micro-mechanics-based elastic–plastic model is then implemented for a material point in view of simulations of homogeneous laboratory tests. The proposed model is applied to describe mechanical behaviors of two representative porous rocks, sandstone and chalk. Comparisons between numerical results and experimental data are presented for triaxial compression tests with different confining pressures, and they show that the micro-mechanical model is able to capture main features of mechanical behaviors of porous rock-like rocks.


Homogenization Micro-mechanics Plastic deformation Pore collapse Porous materials Porous rocks 


  1. 1.
    Aubertin M, Li L (2004) A porosity-dependent inelastic criterion for engineering materials. Int J Plast 20:2179–2208CrossRefzbMATHGoogle Scholar
  2. 2.
    Besuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37:1223–1237CrossRefGoogle Scholar
  3. 3.
    Chen H, Hu Z (2003) Some factors affecting the uniaxial strength of weak sandstones. Bull Eng Geol Environ 62:323–332CrossRefGoogle Scholar
  4. 4.
    Collin F, Cui Y, Schroeder C, Charlier R (2002) Mechanical behaviour of Lixhe chalk partly saturated by oil and water: experiment and modelling. Int J Numer Anal Meth Geomech 26(9):897–924CrossRefzbMATHGoogle Scholar
  5. 5.
    De Buhan P, Dormieux L (2000) On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach. J Mech Phys Solids 44:1649–1667CrossRefGoogle Scholar
  6. 6.
    De Gennaro V, Delage P, Priol G, Collin F, Cui Y (2004) On the collapse behaviour of oil reservoir chalk. Geotechnique 54:415–420CrossRefGoogle Scholar
  7. 7.
    Desai C (2001) Mechanics of materials and interfaces: the disturbed state concept. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Durban D, Cohen T, Hollander Y (2010) Plastic response of porous solids with pressure sensitive matrix. Mech Res Commun 37:636–641CrossRefzbMATHGoogle Scholar
  9. 9.
    Fakhimi A, Riedel J, Labuz J (2006) Shear banding in sandstone: physical and numerical studies. Int J Geomech 6:185–194CrossRefGoogle Scholar
  10. 10.
    Guo T, Faleskog J, Shih C (2008) Continuum modeling of a porous solid with pressure sensitive dilatant matrix. J Mech Phys Solids 56:2188–2212CrossRefzbMATHGoogle Scholar
  11. 11.
    Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Holloway-Strong M, Hughes S, Hellawell E (2007) Stress-deformation behavior of chalk. Int J Geomech 7:403–409CrossRefGoogle Scholar
  13. 13.
    Homand S, Shao J (2000) Mechanical behaviour of a porous chalk and effect of saturating fluid. Mech Cohes Frict Mater 5(7):583–606CrossRefGoogle Scholar
  14. 14.
    Hu D, Zhou H, Zhang F, Shao J (2010) Evolution of poroelastic properties and permeability in damaged sandstone. Int J Rock Mech Min Sci 47:962–973CrossRefGoogle Scholar
  15. 15.
    Jeong H (2002) A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices. Int J Solids Struct 39:1385–1403CrossRefzbMATHGoogle Scholar
  16. 16.
    Jiang T, Shao J (2012) Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast fourier transform. Comput Geotech 46:69–74CrossRefGoogle Scholar
  17. 17.
    Khazraei R (1996) Experimental study and constitutive modeling of damage in brittle rocks. PhD thesis, University of Lille, LilleGoogle Scholar
  18. 18.
    Lade P, Kim M (1995) Single hardening constitutive model for soil, rock and concrete. Int J Solids Struct 32:1963–1978CrossRefzbMATHGoogle Scholar
  19. 19.
    Lee J, Oung J (2000) Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials. J Appl Mech 67:288–297CrossRefzbMATHGoogle Scholar
  20. 20.
    Lin J, Xie S, Shao J, Kondo D (2012) A micromechanical modeling of ductile behavior of a porous chalk: formulation, identification, and validation. Int J Numer Anal Meth Geomech 36:1245–1263CrossRefGoogle Scholar
  21. 21.
    Lubliner J (1990) Plasticity theory. Macmillan, New YorkzbMATHGoogle Scholar
  22. 22.
    Lydzba D, Shao J (2002) Stress equivalence principle for saturated porous media. Comptes Rendus Mecanique 330:297–303CrossRefzbMATHGoogle Scholar
  23. 23.
    Menéndez B, Zhu W, Wong T-F (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18(1):1–16Google Scholar
  24. 24.
    Monchiet V, Kondo D (2012) Exact solution of a plastic hollow sphere with a Mises–Schleicher matrix. Int J Eng Sci 51:168–178MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mori T, Tanaka K (1973) Average stress in a matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 42(7):597–629Google Scholar
  26. 26.
    Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27:1–17CrossRefzbMATHGoogle Scholar
  27. 27.
    Pastor F, Kondo D, Pastor J (2013) Limit analysis and computational modeling of the hollow sphere model with a Mises–Schleicher matrix. Int J Eng Sci 66–67:60–73CrossRefGoogle Scholar
  28. 28.
    Risnes R (2001) Deformation and yield in high porosity outcrop chalk. Phys Chem Earth A 26:53–57CrossRefGoogle Scholar
  29. 29.
    Schleicher F (1926) Der spannungszustand an der fließgrenze (plastizitatsbedingung). ZAMM J Appl Math Mech 6:199–216CrossRefzbMATHGoogle Scholar
  30. 30.
    Schroeder C (2003) Du coccolithe au réservoir pétrolier; approche phénoménologique du comportement mécanique de la craie en vue de sa modélisation à différentes échelles. PhD thesis, University of Liège, LiègeGoogle Scholar
  31. 31.
    Shao J, Khazraei R (1996) A continuum damage mechanics approach for time independent and dependent behavior of brittle rock. Mech Res Commun 23:257–276CrossRefzbMATHGoogle Scholar
  32. 32.
    Shen WQ, Shao JF, Dormieux L, Kondo D (2012) Approximate criteria for ductile porous materials having a Green type matrix: application to double porous media. Comput Mater Sci 62:189–194CrossRefGoogle Scholar
  33. 33.
    Shen WQ, Kondo D, Dormieux L, Shao JF (2013a) A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. Mech Mater 59:73–86CrossRefGoogle Scholar
  34. 34.
    Shen WQ, Pastor F, Kondo D (2013b) Improved criteria for ductile porous materials having a green type matrix by using Eshelby-like velocity fields. Theor Appl Fract Mech 67–68:14–21CrossRefGoogle Scholar
  35. 35.
    Shen WQ, He Z, Dormieux L, Kondo D (2014a) Effective strength of saturated double porous media with a Drucker–Prager solid phase. Int J Numer Anal Meth Geomech 38:281–296CrossRefGoogle Scholar
  36. 36.
    Shen WQ, Lanoye E, Dormieux L, Kondo D (2014b) Homogenization of saturated double porous media with Eshelby-like velocity field. Acta Geophys 62(5):1146–1162CrossRefGoogle Scholar
  37. 37.
    Shen WQ, Oueslati A, De Saxce G (2015a) Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field. Int J Plast 70:60–76CrossRefGoogle Scholar
  38. 38.
    Shen WQ, Shao JF, Kondo D, De Saxce G (2015b) A new macroscopic criterion of porous materials with a Mises–Schleicher compressible matrix. Eur J Mech A/Solids 49:531–538CrossRefGoogle Scholar
  39. 39.
    Tvergaard V (1981) Influence of voids on shear bands instabilities under plane strain conditions. Int J Fract 17:389–407CrossRefGoogle Scholar
  40. 40.
    Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Met 32:157–169CrossRefGoogle Scholar
  41. 41.
    Wong T, Szeto H, Zhang J (1992) Effect of loading path and porosity on the failure mode of porous rocks. Appl Mech Rev 45:281–293CrossRefGoogle Scholar
  42. 42.
    Xie S, Shao J (2006) Elastoplastic deformation of a porous rock and water interaction. Int J Plast 22(12):2195–2225CrossRefzbMATHGoogle Scholar
  43. 43.
    Xie S, Shao J (2012) Experimental investigation and poroplastic modeling of saturated porous geomaterials. Int J Plast 39:27–45CrossRefGoogle Scholar
  44. 44.
    Xie S, Shao J (2015) An experimental study and constitutive modeling of saturated porous rocks. Rock Mech Rock Eng 48:223–234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Mechanics of LilleUniversity of LilleVilleneuve d’AscqFrance

Personalised recommendations