Abstract
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abelev AV, Lade PV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. I: stress–strain behavior and shear banding. J Eng Math 129(2):160–166. doi:10.1061/(ASCE)0733-9399(2003)129:2(160)
Ai J, Chen J, Rotter J, Ooi J (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. doi:10.1016/j.powtec.2010.09.030
Azéma E, Radjaï F (2012) Force chains and contact network topology in sheared packings of elongated particles. Phys Rev E 85(3):031303. doi:10.1103/PhysRevE.85.031303
Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(2):99–112. doi:10.1680/geot.1985.35.2.99
Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245. doi:10.1016/j.ijplas.2015.10.007
Collins I, Muhunthan B (2003) On the relationship between stress–dilatancy, anisotropy, and plastic dissipation for granular materials. Geotechnique 53(7):611–618. doi:10.1680/geot.2003.53.7.611
Dai B, Yang J, Zhou C, Luo X (2016) DEM investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology 28(3):177–184. doi:10.1016/j.partic.2015.03.010
Göncü F, Luding S (2013) Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials. Acta Geotech 8(6):629–643. doi:10.1007/s11440-013-0258-z
Gong G, Lin P, Qin Y, Wei J (2012) DEM simulation of liquefaction for granular media under undrained axisymmetric compression and plane strain conditions. Acta Mech Solida Sin 25(6):562–570. doi:10.1016/S0894-9166(12)60051-2
Guo N, Zhao JD (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15. doi:10.1016/j.compgeo.2012.07.002
Huang X (2014) Exploring critical-state behaviour using DEM. Dissertation, University of Hong Kong
Huang X, Hanley KJ, O’Sullivan C, Kwok CY, Wadee MA (2014) DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granul Matter 16(5):641–655. doi:10.1007/s10035-014-0520-6
Huang X, O’Sullivan C, Hanley KJ, Kwok CY (2014) Discrete-element method analysis of the state parameter. Geotechnique 64(11):954–965. doi:10.1680/geot.14.P.013
Iwashita K, Oda M (1999) Mechanics of granular materials: an introduction. CRC Press, Boca Raton
Kloss C, Goniva C (2011) LIGGGHTS–open source discrete element simulations of granular materials based on Lammps. Suppl Proc Mater Fabr Prop Charact Model 2:781–788. doi:10.1002/9781118062142.ch94
Kruyt NP (2010) Micromechanical study of plasticity of granular materials. Comptes Rendu Mec 338(10):596–603. doi:10.1016/j.crme.2010.09.005
Kruyt NP, Rothenburg L (2006) Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J Stat Mech Theory E 7:07021. doi:10.1088/1742-5468/2006/07/P07021
Lade PV, Abelev AV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. II: volume change behavior and failure. J Eng Math 129(2):167–174. doi:10.1061/(ASCE)0733-9399(2003)129:2(167)
Li XS (2002) A sand model with state-dependent dilatancy. Geotechnique 52(3):173–186. doi:10.1680/geot.2002.52.3.173
Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron 124(12):1215–1217. doi:10.1061/(ASCE)1090-0241(1998)124:12(1215)
Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460. doi:10.1680/geot.2000.50.4.449
Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech ASCE 138(3):263–275. doi:10.1061/(ASCE)EM.1943-7889.0000324
Li XS, Dafalias YF (2015) Dissipation consistent fabric tensor definition from DEM to continuum for granular media. J Mech Phys Solids 78:141–153. doi:10.1016/j.jmps.2015.02.003
Li XS, Dafalias YF, Wang ZL (1999) State-dependant dilatancy in critical-state constitutive modelling of sand. Can Geotech J 36(4):599–611. doi:10.1139/t99-029
Ma G, Chang XL, Zhou W, Ng TT (2014) Mechanical response of rockfills in a simulated true triaxial test: a combined FDEM study. Geomech Eng 7(3):317. doi:10.12989/gae.2014.7.3.317
Ma G, Zhou W, Ng TT, Cheng YG, Chang XL (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10(4):481–496. doi:10.1007/s11440-015-0367-y
Ma G, Zhou W, Chang X, Chen M (2016) A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul Matter 18(1):1–17. doi:10.1007/s10035-016-0615-3
Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272. doi:10.1680/geot.1997.47.2.255
Ng TT (2009) Shear strength and micro-descriptors of bidisperse ellipsoids under different loading paths. Mech Mater 41(6):748–763. doi:10.1016/j.mechmat.2009.01.031
Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22:96–108. doi:10.3208/sandf1972.22.4_96
Pietruszczak S, Guo P (2013) Description of deformation process in inherently anisotropic granular materials. Int J Numer Anal Methods 37(5):478–490. doi:10.1002/nag.1106
Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011
Pouragha M, Wan R (2016) Onset of structural evolution in granular materials as a redundancy problem. Granul Matter 18(3):1–13. doi:10.1007/s10035-016-0640-2
Roscoe KH, Schofield A, Wroth CP (1958) On the yielding of soils. Geotechnique 8(1):22–53. doi:10.1680/geot.1958.8.1.22
Roscoe KH, Schofield A, Thurairajah A (1963) Yielding of clays in states wetter than critical. Geotechnique 13(3):211–240. doi:10.1680/geot.1963.13.3.211
Rowe PW (1962) The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. In: Proceedings of the royal society of london A: mathematical, physical and engineering Sciences. The Royal Society. doi:10.1098/rspa.1962.0193
Sazzad MM, Suzuki K (2013) Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM. Granul Matter 15(5):583–593. doi:10.1007/s10035-013-0422-z
Schofield A, Wroth P (1968) Critical state soil mechanics. Pergamon, Oxford
Sibille L, Donzé FV, Nicot F, Chareyre B, Darve F (2008) From bifurcation to failure in a granular material: a DEM analysis. Acta Geotech 3(1):15–24. doi:10.1007/s11440-007-0035-y
Thornton C, Zhang L (2010) On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Geotechnique 60(5):333–341. doi:10.1680/geot.2010.60.5.333
Wang Q, Lade PV (2001) Shear banding in true triaxial tests and its effect on failure in sand. J Eng Math 127(8):754–761. doi:10.1061/(ASCE)0733-9399(2001)127:8(754),754-761
Xiao Y, Liu H, Zhu J, Shi W (2011) Dilatancy equation of rockfill material under the true triaxial stress condition. Sci China Technol Sci 54(1):175–184. doi:10.1007/s11431-011-4636-1
Xiao Y, Liu H, Chen Y, Chu J (2014) Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. J Geotech Geoenviron 140(11):04014064. doi:10.1061/(ASCE)GT.1943-5606.0001178
Xiao Y, Sun Y, Liu H, Yin F (2016) Critical state behaviors of a coarse granular soil under generalized stress conditions. Granul Matter 18(2):1–13. doi:10.1007/s10035-016-0623-3
Yimsiri S, Soga K (2010) DEM analysis of soil fabric effects on behaviour of sand. Geotechnique 60:483–495. doi:10.1680/geot.2010.60.6.483
Yin Z, Chang C (2013) Stress–dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods 37(8):855–870. doi:10.1002/nag.1125
Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique 63(8):695–704. doi:10.1680/geot.12.P.040
Zheng Y, Shen Z, Gong X (2002) The principles of geotechnical plastic mechanics. China Architecture and Building Press, Beijing
Zhou W, Yang L, Ma G, Chang X, Cheng Y, Li D (2015) Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul Matter 17(4):497–509. doi:10.1007/s10035-015-0571-3
Zhou W, Liu J, Ma G, Yuan W, Chang X (2016) Macroscopic and microscopic behaviors of granular materials under proportional strain path: a DEM study. Int J Numer Anal Methods. doi:10.1002/nag.2537
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant NoS. 51579193 and 51509190) and China Postdoctoral Science Foundation. We thank the Water Resources and Hydropower High-Performance Computing Center for its invaluable help in the numerical computation. We thank all the anonymous reviewers for their helpful suggestions on the quality improvement of our paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, W., Liu, J., Ma, G. et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotech. 12, 527–540 (2017). https://doi.org/10.1007/s11440-017-0530-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11440-017-0530-8