Skip to main content
Log in

Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abelev AV, Lade PV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. I: stress–strain behavior and shear banding. J Eng Math 129(2):160–166. doi:10.1061/(ASCE)0733-9399(2003)129:2(160)

    Google Scholar 

  2. Ai J, Chen J, Rotter J, Ooi J (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. doi:10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  3. Azéma E, Radjaï F (2012) Force chains and contact network topology in sheared packings of elongated particles. Phys Rev E 85(3):031303. doi:10.1103/PhysRevE.85.031303

    Article  Google Scholar 

  4. Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(2):99–112. doi:10.1680/geot.1985.35.2.99

    Article  Google Scholar 

  5. Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245. doi:10.1016/j.ijplas.2015.10.007

    Article  Google Scholar 

  6. Collins I, Muhunthan B (2003) On the relationship between stress–dilatancy, anisotropy, and plastic dissipation for granular materials. Geotechnique 53(7):611–618. doi:10.1680/geot.2003.53.7.611

    Article  Google Scholar 

  7. Dai B, Yang J, Zhou C, Luo X (2016) DEM investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology 28(3):177–184. doi:10.1016/j.partic.2015.03.010

    Google Scholar 

  8. Göncü F, Luding S (2013) Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials. Acta Geotech 8(6):629–643. doi:10.1007/s11440-013-0258-z

    Article  Google Scholar 

  9. Gong G, Lin P, Qin Y, Wei J (2012) DEM simulation of liquefaction for granular media under undrained axisymmetric compression and plane strain conditions. Acta Mech Solida Sin 25(6):562–570. doi:10.1016/S0894-9166(12)60051-2

    Article  Google Scholar 

  10. Guo N, Zhao JD (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15. doi:10.1016/j.compgeo.2012.07.002

    Article  MathSciNet  Google Scholar 

  11. Huang X (2014) Exploring critical-state behaviour using DEM. Dissertation, University of Hong Kong

  12. Huang X, Hanley KJ, O’Sullivan C, Kwok CY, Wadee MA (2014) DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granul Matter 16(5):641–655. doi:10.1007/s10035-014-0520-6

    Article  Google Scholar 

  13. Huang X, O’Sullivan C, Hanley KJ, Kwok CY (2014) Discrete-element method analysis of the state parameter. Geotechnique 64(11):954–965. doi:10.1680/geot.14.P.013

    Article  Google Scholar 

  14. Iwashita K, Oda M (1999) Mechanics of granular materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  15. Kloss C, Goniva C (2011) LIGGGHTS–open source discrete element simulations of granular materials based on Lammps. Suppl Proc Mater Fabr Prop Charact Model 2:781–788. doi:10.1002/9781118062142.ch94

    Google Scholar 

  16. Kruyt NP (2010) Micromechanical study of plasticity of granular materials. Comptes Rendu Mec 338(10):596–603. doi:10.1016/j.crme.2010.09.005

    Article  MATH  Google Scholar 

  17. Kruyt NP, Rothenburg L (2006) Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J Stat Mech Theory E 7:07021. doi:10.1088/1742-5468/2006/07/P07021

    Article  Google Scholar 

  18. Lade PV, Abelev AV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. II: volume change behavior and failure. J Eng Math 129(2):167–174. doi:10.1061/(ASCE)0733-9399(2003)129:2(167)

    Google Scholar 

  19. Li XS (2002) A sand model with state-dependent dilatancy. Geotechnique 52(3):173–186. doi:10.1680/geot.2002.52.3.173

    Article  Google Scholar 

  20. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron 124(12):1215–1217. doi:10.1061/(ASCE)1090-0241(1998)124:12(1215)

    Article  Google Scholar 

  21. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460. doi:10.1680/geot.2000.50.4.449

    Article  Google Scholar 

  22. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech ASCE 138(3):263–275. doi:10.1061/(ASCE)EM.1943-7889.0000324

    Article  Google Scholar 

  23. Li XS, Dafalias YF (2015) Dissipation consistent fabric tensor definition from DEM to continuum for granular media. J Mech Phys Solids 78:141–153. doi:10.1016/j.jmps.2015.02.003

    Article  MathSciNet  MATH  Google Scholar 

  24. Li XS, Dafalias YF, Wang ZL (1999) State-dependant dilatancy in critical-state constitutive modelling of sand. Can Geotech J 36(4):599–611. doi:10.1139/t99-029

    Article  Google Scholar 

  25. Ma G, Chang XL, Zhou W, Ng TT (2014) Mechanical response of rockfills in a simulated true triaxial test: a combined FDEM study. Geomech Eng 7(3):317. doi:10.12989/gae.2014.7.3.317

    Article  Google Scholar 

  26. Ma G, Zhou W, Ng TT, Cheng YG, Chang XL (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10(4):481–496. doi:10.1007/s11440-015-0367-y

    Article  Google Scholar 

  27. Ma G, Zhou W, Chang X, Chen M (2016) A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul Matter 18(1):1–17. doi:10.1007/s10035-016-0615-3

    Article  Google Scholar 

  28. Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272. doi:10.1680/geot.1997.47.2.255

    Article  Google Scholar 

  29. Ng TT (2009) Shear strength and micro-descriptors of bidisperse ellipsoids under different loading paths. Mech Mater 41(6):748–763. doi:10.1016/j.mechmat.2009.01.031

    Article  Google Scholar 

  30. Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22:96–108. doi:10.3208/sandf1972.22.4_96

    Article  Google Scholar 

  31. Pietruszczak S, Guo P (2013) Description of deformation process in inherently anisotropic granular materials. Int J Numer Anal Methods 37(5):478–490. doi:10.1002/nag.1106

    Article  Google Scholar 

  32. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  33. Pouragha M, Wan R (2016) Onset of structural evolution in granular materials as a redundancy problem. Granul Matter 18(3):1–13. doi:10.1007/s10035-016-0640-2

    Article  Google Scholar 

  34. Roscoe KH, Schofield A, Wroth CP (1958) On the yielding of soils. Geotechnique 8(1):22–53. doi:10.1680/geot.1958.8.1.22

    Article  Google Scholar 

  35. Roscoe KH, Schofield A, Thurairajah A (1963) Yielding of clays in states wetter than critical. Geotechnique 13(3):211–240. doi:10.1680/geot.1963.13.3.211

    Article  Google Scholar 

  36. Rowe PW (1962) The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. In: Proceedings of the royal society of london A: mathematical, physical and engineering Sciences. The Royal Society. doi:10.1098/rspa.1962.0193

  37. Sazzad MM, Suzuki K (2013) Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM. Granul Matter 15(5):583–593. doi:10.1007/s10035-013-0422-z

    Article  Google Scholar 

  38. Schofield A, Wroth P (1968) Critical state soil mechanics. Pergamon, Oxford

    Google Scholar 

  39. Sibille L, Donzé FV, Nicot F, Chareyre B, Darve F (2008) From bifurcation to failure in a granular material: a DEM analysis. Acta Geotech 3(1):15–24. doi:10.1007/s11440-007-0035-y

    Article  Google Scholar 

  40. Thornton C, Zhang L (2010) On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Geotechnique 60(5):333–341. doi:10.1680/geot.2010.60.5.333

    Article  Google Scholar 

  41. Wang Q, Lade PV (2001) Shear banding in true triaxial tests and its effect on failure in sand. J Eng Math 127(8):754–761. doi:10.1061/(ASCE)0733-9399(2001)127:8(754),754-761

    Google Scholar 

  42. Xiao Y, Liu H, Zhu J, Shi W (2011) Dilatancy equation of rockfill material under the true triaxial stress condition. Sci China Technol Sci 54(1):175–184. doi:10.1007/s11431-011-4636-1

    Article  Google Scholar 

  43. Xiao Y, Liu H, Chen Y, Chu J (2014) Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. J Geotech Geoenviron 140(11):04014064. doi:10.1061/(ASCE)GT.1943-5606.0001178

    Article  Google Scholar 

  44. Xiao Y, Sun Y, Liu H, Yin F (2016) Critical state behaviors of a coarse granular soil under generalized stress conditions. Granul Matter 18(2):1–13. doi:10.1007/s10035-016-0623-3

    Article  Google Scholar 

  45. Yimsiri S, Soga K (2010) DEM analysis of soil fabric effects on behaviour of sand. Geotechnique 60:483–495. doi:10.1680/geot.2010.60.6.483

    Article  Google Scholar 

  46. Yin Z, Chang C (2013) Stress–dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods 37(8):855–870. doi:10.1002/nag.1125

    Article  Google Scholar 

  47. Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique 63(8):695–704. doi:10.1680/geot.12.P.040

    Article  Google Scholar 

  48. Zheng Y, Shen Z, Gong X (2002) The principles of geotechnical plastic mechanics. China Architecture and Building Press, Beijing

    Google Scholar 

  49. Zhou W, Yang L, Ma G, Chang X, Cheng Y, Li D (2015) Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul Matter 17(4):497–509. doi:10.1007/s10035-015-0571-3

    Article  Google Scholar 

  50. Zhou W, Liu J, Ma G, Yuan W, Chang X (2016) Macroscopic and microscopic behaviors of granular materials under proportional strain path: a DEM study. Int J Numer Anal Methods. doi:10.1002/nag.2537

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant NoS. 51579193 and 51509190) and China Postdoctoral Science Foundation. We thank the Water Resources and Hydropower High-Performance Computing Center for its invaluable help in the numerical computation. We thank all the anonymous reviewers for their helpful suggestions on the quality improvement of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Liu, J., Ma, G. et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotech. 12, 527–540 (2017). https://doi.org/10.1007/s11440-017-0530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0530-8

Keywords

Navigation