Skip to main content
Log in

On the simulation of multidimensional cyclic loading with intergranular strain

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A sample of soil is subjected to multidimensional cyclic loading when two or three principal components of the stress or strain tensor are simultaneously controlled to perform a repetitive path. These paths are very useful to evaluate the performance of models simulating cyclic loading. In this article, an extension of an existing constitutive model is proposed to capture the behavior of the soil under this type of loading. The reference model is based on the intergranular strain anisotropy concept and therefore incorporates an elastic locus in terms of a strain amplitude. In order to evaluate the model performance, a modified triaxial apparatus able to perform multidimensional cyclic loading has been used to conduct some experiments with a fine sand. Simulations of the extended model with multidimensional loading paths are carefully analyzed. Considering that many cycles are simulated (\(N>30\)), some additional simulations have been performed to quantify and analyze the artificial accumulation generated by the (hypo-)elastic component of the model. At the end, a simple boundary value problem with a cyclic loading as boundary condition is simulated to analyze the model response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from Fuentes [16]

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Andersen K (2009) Bearing capacity under cyclic loading-offshore, along coast, and on land. The 21st Bjerrum lecture. Can Geotech J 46(5):513–535

    Article  Google Scholar 

  2. Andersen K, Lauritzsen R (1988) Bearing capacity for foundation with cyclic loads. J Geotech Eng ASCE 114(5):540–555

    Article  Google Scholar 

  3. Andersen K, Lauritzsen R (1989) Model tests of offshore platforms II. Interpretation. J Geotech Eng ASCE 115(11):1550–1568

    Article  Google Scholar 

  4. Badellas A, Savvaidis P, Tsotos S (1988) Settlement measurement of a liquid storage tank founded on 112 long bored piles. In: Second international conference on field measurements in geomechanics, Kobe, pp 435–442

  5. Bauer E (1992) Zum mechanischem verhalten granularer stoffe unter vorwiegend ödometrischer beanspruchung. In: Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Karlsruhe, Germany, Heft 130, pp 1–13

  6. Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  7. Bernardie S, Foerster E, Modaressi H (2006) Non-linear site response simulations in Chang-Hwa region during the 1999 Chi-Chi earthquake, Taiwan. Soil Dyn Earthq Eng 26(11):1038–1048

    Article  Google Scholar 

  8. Bjerrum L (1973) Geotechnical problems involved in foundations of structures in the North Sea. Géotechnique 23(3):319–358

    Article  Google Scholar 

  9. Borja R, Tamagnini C, Amorosi A (1997) Coupling plasticity and energy conserving elasticity models for clays. J Geotech Geoenviron Eng ASCE 123(10):948–957

    Article  Google Scholar 

  10. Boyce H (1980) A non-linearmodel for the elastic behaviour of granular materials under repeated loading. In: Pande GN, Zienkiewicz OC (eds) Soils under cyclic and transient loading. A.A. Balkema, Swansea, pp 285–294

    Google Scholar 

  11. Dafalias Y (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112(9):966–987

    Article  Google Scholar 

  12. Dafalias Y, Herrmann L (1982) Bounding surface formulation of soil plasticity. In: Pande G, Zienkiewicz O (eds) Transient and cyclic loads, chapter 10. Wiley, New York, pp 253–282

    Google Scholar 

  13. El Far A, Davie J (2008) Tank settlement due to highly plastic clays. In: Prakash S (ed) Sixth International conference on case histories in geotechnical engineering, MI University, Arlington, p 32

  14. Fellenius B, Ochoa M (2013) Large liquid storage tanks on piled foundations. In: Hai NM (ed) International conference on foundation on soft ground engineering-challenges in the Mekong Delta, HoChiMinh City, pp 3–17

  15. Finn W (2000) State-of-the-art of geotechnical earthquake engineering practice. Soil Dyn Earthq Eng 20(1–4):1–15

    Article  Google Scholar 

  16. Fuentes W (2014) Contributions in Mechanical Modelling of Fill Materials. Schriftenreihe des Institutes für Bodenmechanik und Felsmechanik des Karlsruher Institut für Technologie, Heft 179

  17. Fuentes W, Triantafyllidis T (2015) ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int J Numer Anal Methods Geomech 39(11):1235–1254

    Article  Google Scholar 

  18. Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7(3):177–192

    Article  Google Scholar 

  19. Gajo A (2009) Hyperelsatic modelling of small-strain stiffness anisotropy of cyclically loaded sand. Int J Numer Anal Methods Geomech 34(2):111–134

    MATH  Google Scholar 

  20. Gazetas G (1983) Analysis of machine foundation vibrations: state of the art. Soil Dyn Earthq Eng 2(1):2–42

    Google Scholar 

  21. Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohesive-Frict Mater 4(5):461–486

    Article  Google Scholar 

  22. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373

    Article  Google Scholar 

  23. Huber G (1988) Erschtterungsausbreitung beim Rad/Schiene-System. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft Nr. 115

  24. Hughes TJR (1998) Classical rate-independent plasticity and viscoplasticity. In: Marsden JE, Sirovich L, Wiggins S (eds) Computational inelasticity, vol 7. Springer, New York

  25. Iraji A, Farzaneh O, Hosseininia E (2014) A modification to dense sand dynamic simulation capability of Pastor–Zienkiewicz–Chan model. Acta Geotech 9(2):343–353

    Article  Google Scholar 

  26. Ishihara K (1993) Liquefaction and flow failure during earthquakes. The 33rd Rankine lecture. Géotechnique 43(3):351–415

    Article  Google Scholar 

  27. Kim D-S, Lee J-S (2000) Propagation and attenuation characteristics of various ground vibrations. Soil Dyn Earthq Eng 19(2):115–126

    Article  Google Scholar 

  28. Kolymbas D (1988) Eine konstitutive Theorie für Boden und andere körmige Stoffe. Habilitation Thesis, Universität Karlsruhe, Germany. Institut für Boden- und Felsmechanik, Heft 109

  29. Li Z, Kotronis P, Escoffier S, Tamagnini C (2016) A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions. Acta Geotech 11(2):373–390

    Article  Google Scholar 

  30. Luco J, Westmann R (1972) Dynamic response of a rigid footing bonded to an elastic half space. J Appl Mech 39(2):169–193

    Article  Google Scholar 

  31. Masin D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    Article  MATH  Google Scholar 

  32. Matsuoka H, Nakai T (1977) Stress–strain relationship of soil based on the SMP. In: Proceedings of speciality session 9, IX international conference on soil mechanic foundation engineering, Tokyo, 1977, pp 153–162

  33. Mroz Z (1967) On the description of anisotropic workhardening. J Mech Phys Solids 15(3):163–175

    Article  MathSciNet  Google Scholar 

  34. Mroz Z (1969) An attempt to describe the behavior of metals under cyclic loads using a more general working hardening model. Acta Mech 7:199–212

    Article  MathSciNet  Google Scholar 

  35. Mroz Z, Norris A, Zienkiewicz O (1978) An anisotropic hardening model for soils and its application to cyclic loading. Int J Numer Anal Methods Geomech 2(3):203–221

    Article  MATH  Google Scholar 

  36. Mylonakis G, Nikolaou S, Gazetas G (2006) Footings under seismic loading: analysis and design issues with emphasis on bridge foundations. Soil Dyn Earthq Eng 26(9):824–853

    Article  Google Scholar 

  37. Niemunis A (2003) Extended Hypoplastic Models for Soils. Habilitation, Schriftenreihe des Institutes für Grundbau und Bodenmechanil der Ruhr-Universität Bochum, Germany, 2003. Heft 34

  38. Niemunis A (2008) Incremental driver, user’s manual. University Karlsruhe KIT, Karlsruhe

    Google Scholar 

  39. Niemunis A, Cudny M (1998) On hyperelasticity for clays. Comput Geotech 23(4):221–236

    Article  Google Scholar 

  40. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frict Mater 2(4):279–299

    Article  Google Scholar 

  41. Osinov VA, Chrisopoulos S, Triantafyllidis T (2013) Numerical study of the deformation of saturated soil in the vicinity of a vibrating pile. Acta Geotech 8(4):439–446

    Article  Google Scholar 

  42. Oztoprak S, Bolton MD (2013) Stiffness of sands through a laboratory test database. Géotechnique 63(1):54–70

    Article  Google Scholar 

  43. Pastor M, Zienkiewicz O, Chan A (1990) Generalized plasticity and modeling of soil behavior. Int J Numer Anal Methods Geomech 14(3):151–190

    Article  MATH  Google Scholar 

  44. Poblete M, Wichtmann T, Niemunis A, Triantafyllidis Th (2011) Accumulation of residual deformations due to cyclic loading with multidimensional strain loops. In: 5th international conference on earthquake engineering, Santiago, Chile, January 2011

  45. Poblete M, Wichtmann T, Niemunis A, Triantafyllidis Th (2015) Caracterización cíclica multidimensional de suelos no cohesivos. Obras y Proyectos 17:31–37

    Article  Google Scholar 

  46. Rascol E (2009) Cyclic properties of sand: dynamic behaviour for seismic applications. Ph.D. thesis, École Polythecnique Fédérale de Lausanne

  47. Richart F, Hall J, Woods R (1970) Vibrations of soils and foundations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  48. Richart F, Whitman R (1967) Comparison of footing vibration tests with theory. J Soil Mech Found Div ASCE 93(6):143–168

    Google Scholar 

  49. Shi X, Herle I (1010) Numerical simulation of lumpy soils using a hypoplastic model. Acta Geotech. doi:10.1007/s11440-016-0447-7

    Google Scholar 

  50. Siddiquee M (2015) A pressure-sensitive kinematic hardening model incorporating masing’s law. Acta Geotech 10(5):623–642

    Article  Google Scholar 

  51. Simpson B (1992) Retaining structures: displacement and design. Géotechnique 42(4):541–576

    Article  Google Scholar 

  52. Triantafyllidis Th, Wichtmann T, Fuentes W (2013) Zustände der grenztragfähigkeit und gebrauchstauglichkeit von böden unter zyklischer belastung. In: Schanz T, Hettler A (eds) Aktuelle Forschung in der Bodenmechanik 2013. Springer, Berlin, pp 147–176

    Google Scholar 

  53. Vermeer P (1982) A five constant model unifying well established concepts. In: Gudehus G (ed) International workshop on constitutive relations for soils, Grenoble, pp 175–198

  54. Wegener D, Herle I (2014) Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Acta Geotech 37:113–122

    Article  Google Scholar 

  55. Weifner T, Kolymbas D (2007) A hypoplastic model for clay and sand. Acta Geotech 2(2):103–112

    Article  Google Scholar 

  56. Whitman R, Richart F (1967) Design procedures for dynamically loaded foundations. J Soil Mech Found Div ASCE 93(6):169–193

    Google Scholar 

  57. Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38. www.rz.uni-karlsruhe.de/~gn97/

  58. Wichtmann T, Niemunis A, Triantafyllidis Th (2013) On the “elastic” stiffness in a high-cycle accumulation model—continued investigations. Can Geotech J 50(12):1260–1272

    Article  Google Scholar 

  59. Wolffersdorff V (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-Frict Mater 1(3):251–271

    Article  Google Scholar 

  60. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862

    Article  MATH  Google Scholar 

  61. Wu W, Niemunis A (1996) Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech Cohesive-Frict Mater 1(2):145–163

    Article  Google Scholar 

  62. Zienkiewicz O, Mroz Z (1984) Generalized plasticity formulation and application to geomechanics. In: Desai C, Gallagher R (eds) Mechanics of engineering materials. Wiley, New York, pp 655–679

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Fuentes.

Appendices

Appendix 1: Hypoplastic model from Wolffersdorff

The general equation of the hypoplastic model by Wolffersdorff [59] can be written as:

$$\begin{aligned} \dot{{\varvec{\sigma }}}=\bar{\mathsf{E}}:(\dot{{{\varvec{\varepsilon }} }}- \dot{\bar{\varvec{\varepsilon }}}^p) \end{aligned}$$
(23)

whereby \(\bar{\mathsf{E}}\) is the “linear” stiffness and \(\bar{{\varvec{\varepsilon }}}^p\) is the hypoplastic strain rate defined in the sequel. According to the ISA + HP nomenclature, the tensor \(\mathsf{E}\) is referred as the mobilized stiffness and \(\bar{{\varvec{\varepsilon }}}^p\) as the mobilized plastic strain rate. The definition of \(\bar{\mathsf{E}}\) reads [59]:

$$\begin{aligned} \bar{\mathsf{E}}=f_bf_e\dfrac{1}{\hat{{\varvec{\sigma }}} :\hat{{\varvec{\sigma }}}} (F^2\mathsf{I}+a^2\hat{{\varvec{\sigma }}}\hat{{\varvec{\sigma }}}) \end{aligned}$$
(24)

whereby \(\hat{{\varvec{\sigma }}}= {\varvec{\sigma }}/\mathrm{tr}{\varvec{\sigma }}\) is the relative stress, \(f_b\), \(f_e\), F and a are scalar factors and \(\mathsf{I}\) is the fourth-order tensor for symmetric second-order tensors. The scalar factor F is responsible for the Matsuoka–Nakai shape of the critical state surface and is defined as:

$$\begin{aligned} F=\sqrt{\dfrac{1}{8}\tan ^2(\psi )+\dfrac{2-\tan ^2(\psi )}{2+2\sqrt{2}\tan (\psi )\cos (3\theta )}}-\dfrac{1}{2\sqrt{2}\tan (\psi )} \end{aligned}$$
(25)

whereby the factors a, \(\theta \) and \(\psi \) are defined as:

$$\begin{aligned} a&=\dfrac{\sqrt{3}(3-\sin (\varphi _c))}{2\sqrt{2}\sin (\varphi _c))}\nonumber \\ \tan \psi&=\sqrt{3} \Vert \hat{{\varvec{\sigma }}}^* \Vert \nonumber \\ \cos (3\theta ) &= \sqrt 6 \frac{{{\text{tr}}(\widehat{\sigma }^{*} \widehat{\sigma }^{*} \widehat{\sigma }^{*} )}}{{(\widehat{\sigma }^{*} :\widehat{\sigma }^{*} )^{{3/2}} }} \end{aligned}$$
(26)

The tensor \({\varvec{\sigma }}^*\) is the deviator stress tensor and \(\varphi _c\) is the critical state friction angle. The model incorporates the characteristic void ratios corresponding to the maximum \(e_i\), minimum \(e_d\) and critical \(e_c\), respectively. They follow the function proposed by Bauer [5] depending on the mean pressure p:

$$\begin{aligned} e_i&=e_{i0}\exp \left( -\left( 3p/h_s\right) ^{n_B}\right) \nonumber \\ e_d&=e_{d0}\exp \left( -\left( 3p/h_s\right) ^{n_B}\right) \nonumber \\ e_c&=e_{c0}\exp \left( -\left( 3p/h_s\right) ^{n_B}\right) \end{aligned}$$
(27)

where \(e_{i0}\), \(e_{d0}\) and \(e_{c0}\) are parameters representing the characteristic void ratios at \(p=0\) and \(h_s\) and \(n_B\) are additional parameters to fit these curves. The scalar functions \(f_e\) and \(f_b\) read:

$$\begin{aligned} f_e&=\left( \dfrac{e_c}{e}\right) ^\beta \nonumber \\ f_b&=\dfrac{h_s}{n}\left( \dfrac{1+e_i}{e_i}\right) \left( \dfrac{e_{i0}}{e_{c0}}\right) ^\beta \left( -\dfrac{\mathrm{tr{\varvec{\sigma }}}}{h_s}\right) ^{1-n}\left[ 3+a^2-\sqrt{3}a\left( \dfrac{e_{i0}-e_{d0}}{e_{c0}-e_{d0}}\right) ^\beta \right] ^{-1} \end{aligned}$$
(28)

whereby \(\beta \) and \(\alpha \) are material parameters The mobilized plastic strain rate \( \dot{\bar{\varvec{\varepsilon }}}^p\) is defined as:

$$\begin{aligned} \dot{\bar{\varvec{\varepsilon }}}^p=-\bar{\mathsf{E}}^{-1} : \bar{\mathbf {N}} \parallel \dot{{{\varvec{\varepsilon }} }}\parallel \end{aligned}$$
(29)

whereby tensor \(\bar{\mathbf {N}}\) reads:

$$\begin{aligned} \bar{\mathbf {N}}=f_df_bf_e\dfrac{Fa}{\hat{{\varvec{\sigma }}}:\hat{{\varvec{\sigma }}}}(\hat{{\varvec{\sigma }}}+\hat{{\varvec{\sigma }}}^*) \end{aligned}$$
(30)

and the factor \(f_d\) follows the relation:

$$\begin{aligned} f_d=\left( \dfrac{e-e_d}{e_c-e_d}\right) ^\alpha \end{aligned}$$
(31)

Details of these functions are explained in [37]. The required parameters are briefly described in the following appendix.

Appendix 2: Short guide to determine the ISA + HP parameters

The ISA + HP model (without the proposed extension) requires the calibration of 12 parameters. In this appendix, a short guide for their determination is provided.

  • The critical state friction angle \(\varphi _c\) can be adjusted with points of a triaxial compression test after a vertical strain of \(\varepsilon _1>25\,\%\). The critical state slope within the \(p-q\) space can be calibrated with the relation \(q/p=6\sin \varphi _c/(3-\sin \varphi _c)\) for these points.

  • The maximum void ratio at \(p=0\) denoted with \(e_{i0}\) can be obtained through the standardized minimum density test (ASTM D4254-14).

  • The exponent \(n_B\) can be adjusted to match the elastic stiffness dependence with the mean pressure \(G\sim p^{1-n_B}\) through the results of resonant column test for different confining pressures. If the experiments are scarce, some values from the literature can be adopted, e.g., \(n_B=0.5\) [47].

  • The granular hardness \(h_s\) can be adjusted to simulate the oedometric compression stiffness under very loose states \(e\approx e_i\) where \(e_i=e_i(p)\) is the maximum void ratio curve. A method to determine \(h_s\) given some oedometric results is described by Herle and Gudehus [21].

  • The critical state void ratio at \(p=0\) denoted with \(e_{c0}\) can be adjusted from points lying at the critical state (\(\varepsilon _1>25\,\%\) with triaxial compression) in the \(e-p\) space with very low pressure \(p<20\hbox { kPa}\). When data are scarce, one may adopt the approximation \(e_{c0}\approx 0.9 e_{i0}\).

  • The dilatancy exponent \(\alpha \) is calibrated with the behavior of medium-dense and dense samples sheared through drained triaxial compression. This parameter controls the dilatancy rate of the volumetric strains after reaching the phase of transformation line. A relation to determine \(\alpha \) with drained triaxial test is described by Herle and Gudehus [21].

  • The barotropy exponent \(\beta \) is adjusted to dense samples compressed under oedometric conditions. Herle and Gudehus [21] provided an equation to determine this parameter.

  • The parameter R defines the size of the elastic locus in terms of strain increments. For the secant shear stiffness \(G^\mathrm{sec}\), this can be interpreted as the strain range at which no degradation occurs. Many experiments point a value of approximately \(\parallel \Delta {\varvec{\varepsilon }}\parallel \approx 10^{-5}\) for sands, but as mentioned in [17], a small value of this parameter may lead to numerical difficulties when dealing with finite element simulations. Hence, a value of \(\parallel \Delta {\varvec{\varepsilon }}\parallel > 5\times 10^{-5}\) is recommended.

  • The parameter \(\beta _h\) controls the needed strain increment to eliminate the influence of the intergranular strain effect in the model. In other words, it controls the size of the strain amplitude at which no “small strain effects” is simulated by the model. The equation relating this strain amplitude with the parameter \(\beta _h\) was provided in [17] and reads:

    $$\begin{aligned} \beta _h=\dfrac{\sqrt{6}R(\log (4)-2\log (1-r_h))}{6\Delta \varepsilon _s-\sqrt{6} R(3+r_h)} \end{aligned}$$
    (32)

    where \(\Delta \varepsilon _s\) is the deviatoric strain amplitude and \(r_h\approx 0.99\) is a factor which defines how close is tensor \(\mathbf {c}\) to its bounding condition \(r_h=\parallel \mathbf {c}\parallel /\parallel \mathbf {c}_b\parallel \).

  • The parameter \(\chi \) controls the degradation curve shape of the secant shear modulus \(G^\mathrm{sec}\). Its calibration can be performed simulating some cycles of triaxial test as explained in [17].

  • The parameter \(C_a\) controls how fast the plastic accumulation rate reduces upon the cycles. It can be adjusted with a cyclic undrained triaxial test with the behavior of the accumulated pore pressure \(p^\mathrm{acc}_w\) versus the number of cycles N. The first portion of this curve, with approximately \(N<10\), can be adjusted through parameter \(C_a\) by trial and error. An example of its calibration is given in Fig.14c.

  • The parameter \(\chi _{\max }\) controls the accumulation rate when the number of consecutive cycles is large, of about \(N>10\). It can be adjusted with a cyclic undrained triaxial test with the behavior of the accumulated pore pressure \(p^\mathrm{acc}_w\) versus the number of cycles N. An increasing number of \(\chi _{\max }\) would return a lower value of N to reach failure at the critical state line. It can be adjusted by trial and error after fixing \(C_a\). An example of its calibration is given in Fig. 14d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poblete, M., Fuentes, W. & Triantafyllidis, T. On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech. 11, 1263–1285 (2016). https://doi.org/10.1007/s11440-016-0492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0492-2

Keywords

Navigation