Skip to main content
Log in

A discrete element model to link the microseismic energies recorded in caprock to geomechanics

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A discrete element model is presented to study slip-induced microseismic events along weak planes and crack-induced microseismic events within the intact rock for a representative elementary volume, REV, in the caprock of Weyburn reservoir. Also, the effect of varying factors such as orientation, coefficient of friction and elasticity of the weak plane on release of microseismic energies is studied. According to the results, for the conditions studied in this paper, the magnitudes of slip-induced events range from ~−1 to −6, while crack-induced events range from ~−7 to −11. Considering the capability of geophones, this suggests that events “recorded” in the caprock are more likely to have slip origins along weak planes than having crack origins within the intact rock. In order to show the applicability of the model in practice, the events recorded in the caprock of Weyburn from September to November of 2010 are analyzed. Also, a simple model is presented that correlates the amount of consumed energy per volume of the REV with the seismic energy released due to stick–slips along a weak plane. The results show that weak planes can be emissive even long before the failure of their surrounding is reached, and therefore, there can be a level of tolerance for the observed microseismic events in the caprock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Angus DA, Kendall J, Fisher QJ, Segura JM, Skachkov S, Crook AJL, Dutko M (2010) Modelling microseismicity of a producing reservoir from coupled fluid-flow and geomechanical simulation. Geophys Prospect 58(5):901–914

    Article  Google Scholar 

  2. Bell JS, Babcock EA (1986) The stress regime of the Western Canadian Basin and implications for hydrocarbon production. Bull Can Pet Geol, 34(3), 364–378. http://bcpg.geoscienceworld.org/content/34/3/364.citation

  3. Bell JS, Price PR, McLellan PJ (1994) In-situ stress in the Western Canada Sedimentary basin. In: Mossop GD, Shetsen I (eds) Compilers. Canadian Society of Petroleum Geologists and Alberta Research Council, Geological Atlas of Western Canada Sedimentary Basin, pp 439–446

    Google Scholar 

  4. Bormann P, Di Giacomo D (2011) The moment magnitude M w and the energy magnitude M e: common roots and differences. J Seismol 15(2):411–427

    Article  Google Scholar 

  5. Brace WF, Byerlee J (1966) Stick–slip as a mechanism for earthquakes. Science 153(3739):990–992

    Article  Google Scholar 

  6. Byerlee J (1978) Friction of rocks. Pure Appl Geophys PAGEOPH 116(4–5):615–626. doi:10.1007/BF00876528

    Article  Google Scholar 

  7. Cai M, Kaiser PK, Martin CD (2001) Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min Sci 38(8):1135–1145

    Article  Google Scholar 

  8. Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346. doi:10.1016/j.ijggc.2010.08.005

    Article  Google Scholar 

  9. ESG Weyburn Microseismic Progress Report. (2011)

  10. Eyre TS, van der Baan M (2015) Overview of moment-tensor inversion of microseismic events. The Leading Edge 34(8):882–888

    Article  Google Scholar 

  11. Gale WJ, Heasley KA, Iannacchione AT, Swanson PL, Hatherly P, King A (2001) Rock damage characterisation from microseismic monitoring. In: DC Rocks 2001, the 38th US symposium on rock mechanics (USRMS). American Rock Mechanics Association

  12. Goertz-Allmann BP, Kuhn D, Oye V, Bohloli B, Aker E (2014) Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site. Geophys J Int 198(1):447–461. doi:10.1093/gji/ggu010

    Article  Google Scholar 

  13. Gomez JAJ (2006) Geomechanical performance assessment of CO2: EOR geological storage projects. Ph.D. thesis (University of Alberta, Edmonton, AB, Canada)

  14. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res: Solid Earth 84(B5):2348–2350. doi:10.1029/JB084iB05p02348

    Article  Google Scholar 

  15. Harrison B, Falcone G (2014) Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery. Acta Geotech 9(1):29–38

    Article  Google Scholar 

  16. Hazzard JF, Damjanac B (2013) Further investigations of microseismicity in bonded particle models. In: Proceedings of the 3rd International FLAC/DEM Symposium, Hangzhou, China, Itasca Consulting Group, Minneapolis, MN, 22–24 Oct 2013

  17. Hazzard J, Young RP (2000) Simulating acoustic emissions in bonded-particle models of rock. Int J Rock Mech Min Sci, 37(5), 867–872. http://cat.inist.fr/?aModele=afficheN&cpsidt=1419981

  18. Iannacchione AT, Batchler T, Marshall TE (2004) Mapping hazards with microseismic technology to anticipate roof falls: a case study. In: Proceedings of the 23rd international conference on ground control in mining, pp 327–333

  19. Ingraham MD, Issen KA, Holcomb DJ (2013) Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses. Acta Geotech 8(6):645–663

    Article  Google Scholar 

  20. Itasca CG (2015) PFC3D v5.0-user manual. Itasca Consulting Group, Minneapolis

    Google Scholar 

  21. Jafari A, Talman S, Perkins E (2011) Numerical simulation of four-pattern CO2-flood EOR in the Weyburn phase 1B area. Edmonton

  22. Khazaei C, Hazzard J, Chalaturnyk RJ (2015) Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling. Comput Geotech. doi:10.1016/j.compgeo.2015.02.012

    Google Scholar 

  23. Khazaei C, Hazzard J, Chalaturnyk RJ (2015) Discrete element modeling of stick–slip instability and induced microseismicity. Pure Appl Geophys. doi:10.1007/s00024-015-1036-7

    Google Scholar 

  24. Lockner DA (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899. doi:10.1016/0148-9062(93)90041-B

    Article  Google Scholar 

  25. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31:643–659

    Article  Google Scholar 

  26. Mas Ivars D, Potyondy DO, Pierce M, Cundall PA (2008) The smooth-joint contact model. In: Proceedings of WCCM8-ECCOMAS

  27. Maxwell SC, Rutledge J, Jones R, Fehler M (2010) Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75(5):75A129–75A137

    Article  Google Scholar 

  28. Maxwell SC, Urbancic TI (2001) The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge 20(6):636–639

    Article  Google Scholar 

  29. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  30. Raziperchikolaee S, Alvarado V, Yin S (2014) Microscale modeling of fluid flow-geomechanics-seismicity: relationship between permeability and seismic source response in deformed rock joints. J Geophys Res: Solid Earth 119(9):6958–6975. doi:10.1002/2013JB010758

    Article  Google Scholar 

  31. Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73(4):1417–1432. doi:10.1029/JB073i004p01417

    Article  Google Scholar 

  32. Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89(10):2651–2664

    Article  Google Scholar 

  33. Singh A, Delfs JO, Görke UJ, Kolditz O (2014) Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface. Acta Geotech 9(1):81–86

    Article  Google Scholar 

  34. Soltanzadeh H (2009) Geomechanical analysis of caprock integrity. PhD Thesis, University of Saskatchewan, Canada

    Google Scholar 

  35. Song J, Zhang D (2013) Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ Sci Technol 47(1):9–22

    Article  Google Scholar 

  36. Verdon JP (2010) Microseismic monitoring and geomechanical modelling of CO2 storage in subsurface reservoirs. PhD Thesis, University of Bristol, United Kingdom

    Google Scholar 

  37. Verdon JP, Jones B, Kendall J (2012) Microseismic monitoring and geomechanical deformation during CO2 injection at Weyburn. Department of Earth Sciences, University of Bristol, United Kingdom

    Google Scholar 

  38. Verdon JP, Kendall J-M, White DJ, Angus DA (2011) Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations. Earth Planet Sci Lett 305(1):143–152

    Article  Google Scholar 

  39. White D (2013) Seismic characterization and time-lapse imaging during seven years of CO2 flood in the Weyburn field, Saskatchewan, Canada. Int J Greenh Gas Control 16:S78–S94. doi:10.1016/j.ijggc.2013.02.006

    Article  Google Scholar 

  40. Wilson M, Monea M (eds) (2004) IEA GHG Weyburn CO2 monitoring and storage project summary report 2000–2004

  41. Xie H, Li X, Fang Z, Wang Y, Li Q, Shi L, Bai B, Wei N, Hou Z (2014) Carbon geological utilization and storage in China: current status and perspectives. Acta Geotech 9(1):7–27

    Article  Google Scholar 

  42. Young RP, Collins, DS, Hazzard J, Heath A, Pettitt WS, Baker C, Billaux D, Cundall P, Potyondy D, Dedecker F, Svemar C (2005) Seismic validation of 3-D thermo-mechanical models for the prediction of the rock damage around radioactive waste packages in geological repositories-SAFETI. Final Report, European Commission Nuclear Science and Technology

    Google Scholar 

Download references

Acknowledgments

We are grateful to Don White, Neil Wildgust, Joseph Laszlo and Norm Sacuta from PTRC for providing us with the Weyburn database including MS data. The comments by Alireza Ashrafi Moghadam and anonymous reviewers on the paper are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Khazaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaei, C., Hazzard, J. & Chalaturnyk, R. A discrete element model to link the microseismic energies recorded in caprock to geomechanics. Acta Geotech. 11, 1351–1367 (2016). https://doi.org/10.1007/s11440-016-0489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0489-x

Keywords

Navigation