Skip to main content

Strength criterion for cross-anisotropic sand under general stress conditions

Abstract

By incorporating the fabric effect and Lode’s angle dependence into the Mohr–Coulomb failure criterion, a strength criterion for cross-anisotropic sand under general stress conditions was proposed. The obtained criterion has only three material parameters which can be specified by conventional triaxial tests. The formula to calculate the friction angle under any loading direction and intermediate principal stress ratio condition was deduced, and the influence of the degree of the cross-anisotropy was quantified. The friction angles of sand in triaxial, true triaxial, and hollow cylinder torsional shear tests were obtained, and a parametric analysis was used to detect the varying characteristics. The friction angle becomes smaller when the major principal stress changes from perpendicular to parallel to the bedding plane. The loading direction and intermediate principal stress ratio are unrelated in true triaxial tests, and their influences on the friction angle can be well captured by the proposed criterion. In hollow cylinder torsional shear tests with the same internal and external pressures, the loading direction and intermediate principal stress ratio are related. This property results in a lower friction angle in the hollow cylinder torsional shear test than that in the true triaxial test under the same intermediate principal stress ratio condition. By comparing the calculated friction angle with the experimental results under various loading conditions (e.g., triaxial, true triaxial, and hollow cylinder torsional shear test), the proposed criterion was verified to be able to characterize the shear strength of cross-anisotropic sand under general stress conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Abelev AV, Lade PV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. I: stress-strain behavior and shear banding. J Eng Mech ASCE 129(2):160–166

    Article  Google Scholar 

  2. 2.

    Abelev AV, Lade PV (2004) Characterization of failure in cross-anisotropic soils. J Eng Mech ASCE 130(5):599–606

    Article  Google Scholar 

  3. 3.

    Abelev AV, Gutta SK, Lade PV, Yamamuro JA (2007) Modeling cross anisotropy in granular materials. J Eng Mech ASCE 133(1):919–932

    Article  Google Scholar 

  4. 4.

    Arthur J, Menzies B (1972) Inherent Anisotropy in Sand. Géotechnique 22(1):115–128

    Article  Google Scholar 

  5. 5.

    Arthur J, Phillips A (1975) Homogeneous and layered sand in triaxial compression. Géotechnique 25:799–815

    Article  Google Scholar 

  6. 6.

    Bardet JP (1990) Lode dependences for pressure-sensitive isotropic elastoplastic materials. J Appl Mech ASME 57(3):498–506

    Article  Google Scholar 

  7. 7.

    Bishop AW (1966) The strength of soils as engineering materials. Géotechnique 16(2):91–130

    Article  Google Scholar 

  8. 8.

    Chang CS, Bennett K (2015) Micromechanical modeling for the deformation of sand with noncoaxiality between the stress and material axes. J Eng Mech ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000966

    Google Scholar 

  9. 9.

    Chang CS, Hicher PY (2005) An elastic–plastic model for granular materials with microstructural consideration. Int J Solids Struct 42:4258–4277

    Article  MATH  Google Scholar 

  10. 10.

    Chang CS, Yin Z-Y (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech ASCE 136(7):830–839

    Article  Google Scholar 

  11. 11.

    Chang J, Chu X, Xu Y (2014) Finite-element analysis of failure in transversely isotropic geomaterials. Int J Geomech ASCE. doi:10.1061/(ASCE)GM.1943-5622.0000455

    Google Scholar 

  12. 12.

    Dafalias Y, Papadimitriou A, Li X (2004) Sand plasticity model accounting for inherent fabric anisotropy. J Eng Mech (ASCE) 130(11):1319–1333

    Article  Google Scholar 

  13. 13.

    Gao Z, Zhao J (2012) Efficient approach to characterize strength anisotropy in soils. J Eng Mech ASCE 138(12):1447–1456

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gao ZW, Zhao JD, Yao YP (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solids Struct 47:3166–3185

    Article  MATH  Google Scholar 

  15. 15.

    Guo P, Stolle DFE (2005) On the failure of granular materials with fabric effects. Soils Found 45(4):1–12

    Google Scholar 

  16. 16.

    Haruyama M (1981) Anisotropic deformation-strength properties of an assembly of spherical particles under three dimensional stresses. Soils Found 21(4):41–55

    Article  Google Scholar 

  17. 17.

    Huang MS, Lu XL, Qian JG (2010) Non-coaxial elasto-plasticity model and bifurcation prediction of shear banding in sands. Int J Numer Anal Meth Geomech 34(9):906–919

    MATH  Google Scholar 

  18. 18.

    Kong Y, Zhao J, Yao Y (2013) A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotech 8(6):665–673

    Article  Google Scholar 

  19. 19.

    Kumruzzaman M, Yin J-H (2010) Influence of the intermediate principal stress on the stress–strain–strength behaviour of a completely decomposed granite soil. Can Geotech J 47(2):164–179

    Article  Google Scholar 

  20. 20.

    Lade PV (2006) Assessment of test data for selection of 3-D failure criterion for sand. Int J Numer Anal Meth Geomech 30(4):307–333

    Article  Google Scholar 

  21. 21.

    Lade PV (2008) Failure criterion for cross-anisotropic soils. J Geotech Geoenviron Eng ASCE 134(1):117–124

    Article  Google Scholar 

  22. 22.

    Lade PV, Abelev AV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. II: volume change behavior and failure. J Eng Mech ASCE 129(2):167–174

    Article  Google Scholar 

  23. 23.

    Lade PV, Nam J, Hong WP (2008) Shear banding and cross-anisotropic behaviour observed in laboratory sand tests with stress rotation. Can Geotech J 45:74–84

    Article  Google Scholar 

  24. 24.

    Lade PV, Rodriguez NM, Dyck EJV (2014) Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand. J Geotech Geoenviron Eng ASCE 140:04013001-1

    Google Scholar 

  25. 25.

    Li XS, Dafalias YF (2002) Constitutive modeling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng ASCE 128(10):868–880

    Article  Google Scholar 

  26. 26.

    Liu MD, Indraratna BN (2011) General strength criterion for geomaterials including anisotropic effect. Int J Geomech ASCE 11(3):251–262

    Article  Google Scholar 

  27. 27.

    Lu XL, Huang MS, Qian JG (2011) The onset of strain localization in cross-anisotropic soils under true triaxial condition. Soils Found 51(4):693–700

    Article  Google Scholar 

  28. 28.

    Ma Z, Liao H, Dang F (2014) Influence of intermediate principal stress on the bearing capacity of strip and circular footings. J Eng Mech ASCE 140(7):04014041

    Article  Google Scholar 

  29. 29.

    Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stress. Proc JSCE 232:59–70

  30. 30.

    Mortara G (2010) A yield criterion for isotropic and cross-anisotropic cohesive-frictional materials. Int J Numer Anal Meth Geomech 34(9):953–977

    MATH  Google Scholar 

  31. 31.

    Ochiai H, Lade PV (1983) Three-dimensional behaviour of sand with anisotropic fabric. J Geotech Eng ASCE 109(10):1313–1328

    Article  Google Scholar 

  32. 32.

    Oda M (1972) Initial fabrics and their relations to mechanical properties of granular material. Soils Found 12(1):17–36

    Article  Google Scholar 

  33. 33.

    Oda M, Koishikawa I, Higuchi T (1978) Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found 18(1):25–38

    Article  Google Scholar 

  34. 34.

    Oda M, Iwashita I, Kazama H (1997) Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure. In: IUTAM symposium on mechanics of granular and porous materials. Kluwer Academic Publishers, Dordrecht

  35. 35.

    Pietruszczak S, Mroz Z (2000) Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput Geotech 26(2):105–112

    Article  Google Scholar 

  36. 36.

    Pietruszczak S, Mroz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Meth Geomech 25(5):509–524

    Article  MATH  Google Scholar 

  37. 37.

    Rodriguez NM, Lade PV (2013) True triaxial tests on cross-anisotropic deposits of fine Nevada sand. Int J Geomech ASCE 13(6):779–793

    Article  Google Scholar 

  38. 38.

    Sun YF, Liu HL, Yang G, Xiao Y (2013) Formulation of cross-anisotropic failure criterion for soils. Water Sci Eng 6(4):456–468

    Google Scholar 

  39. 39.

    Symes MJ, Gens A, Hight DW (1988) Drained principal stress rotation in saturated sand. Géotechnique 38(1):59–81

    Article  Google Scholar 

  40. 40.

    Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. In: International association for bridge and structure engineering proceedings. Bergamo, Italy

  41. 41.

    Wu W (1998) Rational approach to anisotropy of sand. Int J Numer Anal Meth Geomech 22(11):921–940

    Article  MATH  Google Scholar 

  42. 42.

    Yamada Y, Ishihara K (1979) Anisotropic deformation characteristics of sand under three-dimensional stress conditions. Soils Found 19(2):79–94

    Article  Google Scholar 

  43. 43.

    Yang LT, Li X, Yu HS, Wanatowski D (2015) A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotech. doi:10.1007/s11440-015-0423-7

    Google Scholar 

  44. 44.

    Yao Y, Hu J, Zhou A, Luo T, Wang N (2015) Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotech 10(6):749–759

    Article  Google Scholar 

  45. 45.

    Zhao J, Guo N (2015) The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 65(8):642–656

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

The financial supports by National Basic Research Program of China (through Grant No. 2014CB049100, 2012CB719803) and National Science Foundation of China (NSFC through Grant No. 11372228) are gratefully acknowledged. We are grateful to the anonymous reviewers for their helpful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xilin Lü.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Huang, M. & Andrade, J.E. Strength criterion for cross-anisotropic sand under general stress conditions. Acta Geotech. 11, 1339–1350 (2016). https://doi.org/10.1007/s11440-016-0479-z

Download citation

Keywords

  • Cross-anisotropy
  • Friction angle
  • Hollow cylinder torsional shear test
  • Intermediate principal stress ratio
  • Sand
  • True triaxial test