Acta Geotechnica

, Volume 11, Issue 3, pp 539–548 | Cite as

Micro-mechanical failure analysis of wet granular matter

  • Konstantin Melnikov
  • Falk K. Wittel
  • Hans J. Herrmann
Research Paper


We employ a novel fluid–particle model to study the shearing behavior of granular soils under different saturation levels, ranging from the dry material via the capillary bridge regime to higher saturation levels with percolating clusters. The full complexity of possible liquid morphologies Scheel et al. (Nat Mater 7(3):189–193, 2008. doi: 10.1038/nmat2117) is taken into account, implying the formation of isolated arbitrary-sized liquid clusters with individual Laplace pressures that evolve by liquid exchange via films on the grain surface Melnikov et al. (Phys Rev E 92(022):206, 2015. doi: 10.1103/PhysRevE.92.022206). Liquid clusters can grow in size, shrink, merge and split, depending on local conditions, changes of accessible liquid and the pore space morphology determined by the granular phase. This phase is represented by a discrete particle model based on contact dynamics Brendel et al. (Contact dynamics for beginners. Wiley-VCH, Weinheim, 2005. doi: 10.1002/352760362X.ch14), where capillary forces exerted from a liquid phase add to the motion of spherical particles. We study the macroscopic response of the system due to an external compression force at various liquid contents with the help of triaxial shear tests. Additionally, the change in liquid cluster distributions during the compression due to the deformation of the pore space is evaluated close to the critical load.


Contact dynamics Liquid clusters Shear strength Triaxial shear test Wet granular material 



The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7 under the MUMOLADE ITN project (Multiscale Modelling of Landslides and Debris Flow) with REA Grant Agreement No. 289911, as well as from the European Research Council Advanced Grant No. 319968-FlowCCS and the DFG under PiKo SPP 1486 HE 2732/11-3.


  1. 1.
    Belheine N, Plassiard JP, Donzé FV, Darve F, Seridi A (2009) Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput Geotech 36(12):320–331. doi: 10.1016/j.compgeo.2008.02.003 CrossRefGoogle Scholar
  2. 2.
    Brakke K (1996) The surface evolver and the stability of liquid surfaces. Phil Trans R Soc A 354:2143–2157. doi: 10.1098/rsta.1996.0095 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brendel L, Unger T, Wolf DE (2005) Contact dynamics for beginners. Wiley-VCH, Weinheim. doi: 10.1002/352760362X.ch14 Google Scholar
  4. 4.
    Caroli M, Teillaud M (2015) 3D periodic triangulations. In: CGAL user and reference manual, 4th edn. CGAL Editorial BoardGoogle Scholar
  5. 5.
    de Gennes PG, Wyard FB, Quèrè D (2003) Capillary and wetting phenomena: bubbles, pearls, waves. Springer, BerlinGoogle Scholar
  6. 6.
    Gladkikh M (2005) A priori prediction of macroscopic properties of sedimentary rocks containing two immiscible fluids. Ph.D. thesis, University of Texas at AustinGoogle Scholar
  7. 7.
    Gröger T, Tüzün U, Heyes DM (2003) Modelling and measuring of cohesion in wet granular materials. Powder Technol 133(13):203–215. doi: 10.1016/S0032-5910(03)00093-7 CrossRefGoogle Scholar
  8. 8.
    Haines WB (1927) Studies in the physical properties of soils: IV. A further contribution to the theory of capillary phenomena in soil. J Agric Sci 17(02):264–290. doi: 10.1017/S0021859600018499 CrossRefGoogle Scholar
  9. 9.
    Herminghaus S (2005) Dynamics of wet granular matter. Adv Phys 54(3):221–261. doi: 10.1080/00018730500167855 CrossRefGoogle Scholar
  10. 10.
    Lukyanov AV, Sushchikh MM, Baines MJ, Theofanous TG (2012) Superfast nonlinear diffusion: capillary transport in particulate porous media. Phys Rev Lett 109(21):214,501. doi: 10.1103/PhysRevLett.109.214501 CrossRefGoogle Scholar
  11. 11.
    Mani R, Kadau D, Or D, Herrmann HJ (2012) Fluid depletion in shear bands. Phys Rev Lett 109(24):248,001. doi: 10.1103/PhysRevLett.109.248001 CrossRefGoogle Scholar
  12. 12.
    Mani R, Kadau D, Herrmann HJ (2013) Liquid migration in sheared unsaturated granular media. Granul Matter 15(4):447–454. doi: 10.1007/s10035-012-0387-3 CrossRefGoogle Scholar
  13. 13.
    Mani R, Semprebon C, Kadau D, Herrmann HJ, Brinkmann M, Herminghaus S (2015) Role of contact-angle hysteresis for fluid transport in wet granular matter. Phys Rev E 91(4):42,204. doi: 10.1103/PhysRevE.91.042204 CrossRefGoogle Scholar
  14. 14.
    Mani RA (2014) Capillary interactions, shear thickening and liquid migration in wet granular media. Ph.D. thesis, ETH ZurichGoogle Scholar
  15. 15.
    Melnikov K, Mani R, Wittel FK, Thielmann M, Herrmann HJ (2015) Grain-scale modeling of arbitrary fluid saturation in random packings. Phys Rev E 92(022):206. doi: 10.1103/PhysRevE.92.022206 Google Scholar
  16. 16.
    Mitarai N, Nori F (2006) Wet granular materials. Adv Phys 55(1–2):1–45. doi: 10.1080/00018730600626065 CrossRefGoogle Scholar
  17. 17.
    Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A Solids 13:93–114MathSciNetMATHGoogle Scholar
  18. 18.
    Motealleh S, Ashouripashaki M, DiCarlo D, Bryant S (2013) Unified model of drainage and imbibition in 3D fractionally wet porous media. Transp Porous Media 99(3):581–611. doi: 10.1007/s11242-013-0201-7 CrossRefGoogle Scholar
  19. 19.
    Richefeu V, El Youssoufi MS, Radjaï F (2006) Shear strength properties of wet granular materials. Phys Rev E 73(5):51,304. doi: 10.1103/PhysRevE.73.051304 CrossRefGoogle Scholar
  20. 20.
    Rognon PG, Roux JN, Wolf D, Naaïm M, Chevoir F (2006) Rheophysics of cohesive granular materials. EPL (Europhys Lett) 74(4):644CrossRefGoogle Scholar
  21. 21.
    Scheel M (2009) Experimental investigations of the mechanical properties of wet granular matter. Ph.D. thesis, Georg-August-Universitaet GoettingenGoogle Scholar
  22. 22.
    Scheel M, Seemann R, Brinkmann M, Michiel MD, Sheppard A, Breidenbach B, Herminghaus S (2008) Morphological clues to wet granular pile stability. Nat Mater 7(3):189–193. doi: 10.1038/nmat2117 CrossRefGoogle Scholar
  23. 23.
    Scholtès L, Chareyre B, Nicot F, Darve F (2009) Micromechanics of granular materials with capillary effects. Int J Eng Sci 47(11–12):1460–1471. doi: 10.1016/j.ijengsci.2009.10.003 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Scholtès L, Hicher PY, Nicot F, Chareyre B, Darve F (2009b) On the capillary stress tensor in wet granular materials. Int J Numer Anal Methods Geomech 33(10):1289–1313. doi: 10.1002/nag.767 CrossRefMATHGoogle Scholar
  25. 25.
    Wang Q, Lade PV (2001) Shear banding in true triaxial tests and its effect on failure in sand. J Eng Mech 127(8):754–761. doi: 10.1061/(ASCE)0733-9399(2001)127:8(754) CrossRefGoogle Scholar
  26. 26.
    Willett CD, Adams MJ, Johnson SA, Seville JPK (2000) Capillary bridges between two spherical bodies. Langmuir 16(24):9396–9405. doi: 10.1021/la000657y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Konstantin Melnikov
    • 1
  • Falk K. Wittel
    • 1
  • Hans J. Herrmann
    • 1
  1. 1.Computational Physics for Engineering MaterialsETH ZurichZurichSwitzerland

Personalised recommendations