Skip to main content

Active earth pressure analysis based on normal stress distribution function along failure surface in soil obeying nonlinear failure criterion

Abstract

In this paper, the normal stress distribution function along the failure surface in soil obeying general nonlinear failure criterion is first derived, and then a method for calculating the static and seismic active earth pressure for soils obeying nonlinear failure criteria is proposed. The method proposed yields not only the active earth pressure and its action point, but also the failure surface and the stress distribution along it. Results of the calculated examples by the proposed method are more reasonable than those reported in the literature. The influence of the parameters of the nonlinear failure criterion on the active earth pressures is also investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Azad A, Yasrobi SS, Pak A (2008) Seismic active pressure distribution history behind rigid retaining walls. Soil Dyn Earthq Eng 28(5):365–375

    Article  Google Scholar 

  2. Baker R (2004) Nonlinear Mohr envelopes based on triaxial data. J Geotech Geoenviron Eng 130(5):498–506

    Article  Google Scholar 

  3. Baker R, Frydman S (1983) Upper bound limit analysis of soil with non-linear failure criterion. Soils Found 23(4):34–42

    Article  Google Scholar 

  4. Balla A (1961) The resistance to breaking out of mushroom foundations for Pylons. In: Proceedings of 5th international conference on soil mechanics and foundation engineering, Paris

  5. Bishop AW, Webb DL, Lewin PI (1965) Undisturbed samples of London Clay from the Ashford Common shaft: strength–effective stress relationships. Geotechnique 15(1):1–31

    Article  Google Scholar 

  6. Caltabiano S, Cascone E, Maugeri M (2012) Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions. Soil Dyn Earthq Eng 37:38–55

    Article  Google Scholar 

  7. Chen W (1975) Limit analysis and soil plasticity. Elsevier, Amsterdam

    MATH  Google Scholar 

  8. Cheng YM (2003) Seismic lateral earth pressure coefficients for cφ soils by slip line method. Comput Geotech 30(8):661–670

    Article  Google Scholar 

  9. Collins IF, Gunn CIM, Pender MJ, Yan W (1988) Slope stability analyses for materials with a non-linear failure envelope. Int J Numer Anal Methods Geomech 12(5):535–550

    Article  Google Scholar 

  10. Deshmukh VB, Dewaikar DM, Choudhury D (2010) Computations of uplift capacity of pile anchors in cohesionless soil. Acta Geotech 5(2):87–94

    Article  Google Scholar 

  11. Dewaikar DM, Halkude SA (2002) Seismic passive/active thrust on retaining wall-point of application. Soils Found 42(1):9–15

    Article  Google Scholar 

  12. Dewaikar DM, Pandey SR, Dixit J (2012) Active thrust on an inclined retaining wall with inclined cohesionless backfill due to surcharge effect. ISRN Soil Sci 2012:1–8

    Article  Google Scholar 

  13. Fredlund DG, Krahn J, Pufahl DE (1981) The relationship between limit equilibrium slope stability methods. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, Stockholm

  14. Greco VR (2014) Analytical solution of seismic pseudo-static active thrust acting on fascia retaining walls. Soil Dyn Earthq Eng 57:25–36

    Article  Google Scholar 

  15. Iskander M, Chen ZC, Omidvar M, Guzman I (2013) Rankine pseudo-static earth pressure for cϕ soils. Mech Res Commun 51:51–55

    Article  Google Scholar 

  16. Janbu N (1957) Earth pressure and bearing capacity calculations by generalized procedures of slices. In: Proceedings of 4th international conference on soil mechanics and foundation engineering, London

  17. Jiang JC, Baker R, Yamagami T (2003) The effect of strength envelope nonlinearity on slope stability computations. Can Geotech J 40(2):308–325

    Article  Google Scholar 

  18. Kame GS, Dewaikar DM, Choudhury D (2010) Active thrust on a vertical retaining wall with cohesionless backfill. Electron J Geotech Eng 15:1848–1863

    Google Scholar 

  19. Kötter F (1903). Die bestimmung des drucks an gekrümmten gleitflächen, eine aufgabe aus der lehre vom erddruck. In: Sitzungsberichte der Akademie der Wissenschaften, Berlin

  20. Kumar J (2001) Seismic passive earth pressure coefficients for sands. Can Geotech J 38(4):876–881

    Article  Google Scholar 

  21. Kumar J, Chitikela S (2002) Seismic passive earth pressure coefficients using the method of characteristics. Can Geotech J 39(2):463–471

    Article  Google Scholar 

  22. Lancellotta R (2002) Analytical solution of passive earth pressure. Geotechnique 52(8):617–619

    Article  Google Scholar 

  23. Maksimovic M (1989) Nonlinear failure envelope for soils. J Geotech Eng 115(4):581–586

    Article  Google Scholar 

  24. Matsuo M (1967) Study on uplift resistance of footings (I). Soils Found 7(4):1–37

    Article  Google Scholar 

  25. Mononobe N, Matsuo H (1929) On determination of earth pressure during earthquakes. In: Proceedings of the World Engineering Congress, Tokyo

  26. Morrison JEE, Ebeling RM (1995) Limit equilibrium computation of dynamic passive earth pressure. Can Geotech J 32(3):481–487

    Article  Google Scholar 

  27. Okabe S (1924) General theory on earth pressure and seismic stability of retaining walls and dams. J Jpn Soc Civ Eng 10(6):1277–1323

    Google Scholar 

  28. Penman ADM (1953) Shear characteristics of a saturated silt, measured in triaxial compression. Geotechnique 3(8):312–328

    Article  Google Scholar 

  29. Ponce VM, Bell JM (1971) Shear strength of sand at extremely low pressures. J Soil Mech Found Div 97(4):625–638

    Google Scholar 

  30. Rahardjo H, Fredlund DG (1984) General limit equilibrium method for lateral earth force. Can Geotech J 21(6):166–175

    Article  Google Scholar 

  31. Rangari SM, Choudhury D, Dewaikar DM (2013) Estimation of seismic uplift capacity of horizontal strip anchors using pseudo-dynamic approach. KSCE J Civ Eng 17(5):989–1000

    Article  Google Scholar 

  32. Serrano A, Olalla C (1994) Ultimate bearing capacity of rock masses. Int J Rock Mech Min Sci Geomech Abstr 31(2):93–106

    Article  Google Scholar 

  33. Shamsabadi A, Xu S, Taciroglu E (2013) A generalized log-spiral-Rankine limit equilibrium model for seismic earth pressure analysis. Soil Dyn Earthq Eng 49:197–209

    Article  Google Scholar 

  34. Sokolovskii VV (1960) Statics of soil media. Butterworth, London

    Google Scholar 

  35. Sokolovskii VV (1965) Statics of granular media. Pergamon Press, London

    Google Scholar 

  36. Yamaguchi H (1959) A few considerations on the modified Kötter’s equation. Trans Jpn Soc Civ Eng 1959(60):11–19

    Article  Google Scholar 

  37. Yang X (2007) Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion. Theor Appl Fract Mech 47(1):46–56

    Article  Google Scholar 

  38. Yang X, Yin J (2005) Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion. Int J Rock Mech Min Sci 42(4):550–560

    MathSciNet  Article  Google Scholar 

  39. Zakerzadeh N, Fredlund DG, Pufahl DE (1999) Interslice force functions for computing active and passive earth force. Can Geotech J 36(6):1015–1029

    Article  Google Scholar 

  40. Zhang XJ, Chen WF (1987) Stability analysis of slopes with general nonlinear failure criterion. Int J Numer Anal Methods Geomech 11(1):33–50

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work reported in this paper is financially supported by the National Key Fundamental Research and Development Program of China (Project No. 2014CB047004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-xiang Song.

Appendix: Derivation of Eq. (11)

Appendix: Derivation of Eq. (11)

Equation (8) can be rearranged into a matrix form:

$$ [K_{p} ]\left\{ {p_{x} } \right\} + 2R[K_{\theta } ]\left\{ {\theta_{x} } \right\} + \gamma \left\{ {K_{\gamma } } \right\} = \left\{ 0 \right\} $$
(39)

where,

$$ \begin{aligned} [K_{p} ] = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] + \sin \varphi_{\text{t}} \left[ {\begin{array}{*{20}c} {\cos 2\theta } & {\sin 2\theta } \\ {\sin 2\theta } & { - \cos 2\theta } \\ \end{array} } \right] ,\quad \, [K_{\theta } ] = \left[ {\begin{array}{*{20}c} { - \sin 2\theta } & {\cos 2\theta } \\ {\cos 2\theta } & {\sin 2\theta } \\ \end{array} } \right] ,\quad \, \left\{ {K_{\gamma } } \right\} = \left\{ {\begin{array}{*{20}c} {\sin \varepsilon } \\ {\cos \varepsilon } \\ \end{array} } \right\} \hfill \\ \left\{ {p_{x} } \right\} = \left\{ {\begin{array}{*{20}c} {\frac{\partial p}{\partial x}} \\ {\frac{\partial p}{\partial y}} \\ \end{array} } \right\},\quad \, \left\{ {\theta_{x} } \right\} = \left\{ {\begin{array}{*{20}c} {\frac{\partial \theta }{\partial x}} \\ {\frac{\partial \theta }{\partial y}} \\ \end{array} } \right\},\quad \, \left\{ {p_{s} } \right\} = \left\{ {\begin{array}{*{20}c} {\frac{\partial p}{{\partial s_{\alpha } }}} \\ {\frac{\partial p}{{\partial s_{\beta } }}} \\ \end{array} } \right\},\quad \, \left\{ {\theta_{s} } \right\} = \left\{ {\begin{array}{*{20}c} {\frac{\partial \theta }{{\partial s_{\alpha } }}} \\ {\frac{\partial \theta }{{\partial s_{\beta } }}} \\ \end{array} } \right\},\quad \, \left\{ 0 \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right\} \hfill \\ \end{aligned} $$
(40)

According to the chain rule, the directional derivatives {p s } and {θ s } can be formulated as

$$ \left\{ {p_{s} } \right\} = [J]\left\{ {p_{x} } \right\},\quad \left\{ {\theta_{s} } \right\} = [J]\left\{ {\theta_{x} } \right\}\quad {\text{with}}\quad [J] = \left[ {\begin{array}{*{20}c} {\cos \theta_{\alpha } } & {\sin \theta_{\alpha } } \\ {\cos \theta_{\beta } } & {\sin \theta_{\beta } } \\ \end{array} } \right] $$
(41)

where, θ α and θ β are the inclination angles of the α and β line, respectively.Therefore, the derivatives {p x } and {θ x } can be expressed as:

$$ \left\{ {p_{x} } \right\} = [J]^{ - 1} \left\{ {p_{s} } \right\} ,\quad \left\{ {\theta_{x} } \right\} = [J]^{ - 1} \left\{ {\theta_{s} } \right\}{\text{ and }}[J]^{ - 1} = \frac{1}{{\sin (\theta_{\beta } - \theta_{\alpha } )}}\left[ {\begin{array}{*{20}c} {\sin \theta_{\beta } } & { - \sin \theta_{\alpha } } \\ { - \cos \theta_{\beta } } & {\cos \theta_{\alpha } } \\ \end{array} } \right] $$
(42)

Substituting Eq. (42) for {p x } and {θ x } into Eq. (39), the latter then becomes

$$ [K_{p} ][J]^{ - 1} \left\{ {p_{s} } \right\} + 2R[K_{\theta } ][J]^{ - 1} \left\{ {\theta_{s} } \right\} + \gamma \left\{ {K_{\gamma } } \right\} = \left\{ 0 \right\} $$
(43)

Left multiply Eq. (43) by ([J][K θ ]−1) = ([J][K θ ]), the inverse of ([K θ ][J]−1), then we have

$$ [J][K][J]^{ - 1} \left\{ {p_{s} } \right\} + 2R\left\{ {\theta_{s} } \right\} + \gamma [J][K_{\theta } ]\left\{ {K_{\gamma } } \right\} = \left\{ 0 \right\} $$
(44)

where,

$$ [K] = [K_{\theta } ][K_{p} ] = [K_{\theta } ] + \sin \varphi_{\text{t}} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right] $$
(45)

In order to decouple the differential equations, we need to make the matrix \( [J][K][J]^{ - 1} \) a diagonal one by choosing suitable direction angles.

$$ \begin{aligned} & [J][K][J]^{ - 1} = [J][K_{\theta } ][J]^{ - 1} + \sin \varphi_{\text{t}} [J]\left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right][J]^{ - 1} \\ & = \frac{1}{{\sin (\theta_{\beta } - \theta_{\alpha } )}}\left[ {\begin{array}{*{20}c} { - \cos (\theta_{\alpha } + \theta_{\beta } - 2\theta ) + \sin \varphi_{\text{t}} \cos (\theta_{\alpha } - \theta_{\beta } )} & {\cos (2\theta_{\alpha } - 2\theta ) - \sin \varphi_{\text{t}} } \\ { - \cos (2\theta_{\beta } - 2\theta ) + \sin \varphi_{\text{t}} } & {\cos (\theta_{\alpha } + \theta_{\beta } - 2\theta ) - \sin \varphi_{\text{t}} \cos (\theta_{\alpha } - \theta_{\beta } )} \\ \end{array} } \right] \\ \end{aligned} $$
(46)

Let now the non-diagonal elements are zero

$$ \left\{ {\begin{array}{*{20}c} {\cos (2\theta_{\alpha } - 2\theta ) - \sin \varphi_{\text{t}} = 0} \\ { - \cos (2\theta_{\beta } - 2\theta ) + \sin \varphi_{\text{t}} = 0} \\ \end{array} } \right. $$
(47)

which leads to the following two different inclination angles and consequently gives the characteristic line as shown in Fig. 3.

$$ \left\{ {\begin{array}{*{20}c} {\theta_{\alpha } = \theta - \mu } \\ {\theta_{\beta } = \theta + \mu } \\ \end{array} } \right. $$
(48)

Substituting Eq. (48) and Eq. (46) in turn into Eq. (44), we can get the Eq. (11).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Yj., Song, Ex. Active earth pressure analysis based on normal stress distribution function along failure surface in soil obeying nonlinear failure criterion. Acta Geotech. 11, 255–268 (2016). https://doi.org/10.1007/s11440-015-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0390-z

Keywords

  • Limit equilibrium
  • Active earth pressure
  • Normal stress distribution function
  • Nonlinear failure criterion
  • Earthquakes