Skip to main content
Log in

Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This work presents results from a series of triaxial compression tests on two quartz sands (differing principally in grain shape), at confining pressures high enough to cause grain breakage during shearing. Tests are performed inside an X-ray scanner, which allows specimens to be imaged non-destructively as they deform. Observation of the acquired images clearly shows different mechanisms of deformation, including shearing, dilation, compaction and grain breakage. These mechanisms are investigated quantitatively through 3D measurements of local porosity, as well as strain (obtained by 3D Digital image correlation), which is analysed in terms of volumetric and shear components. These tools allow the transition between macroscopically dilative (typically of a dense sand at low mean stress) and compactive behaviour to be investigated. The analysis reveals that at the high end of the confining pressure range studied (100–7,000 kPa), the more rounded sand deforms with highly localised shear and volumetric strain—the porosity fields show a dilative band within which a compactive region (due to grain crushing) grows. The more angular material shows shear strain localisation; however, its faster transition to compactive behaviour (due to a higher propensity for individual grains to crush) translates to much more distributed compactive volumetric strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Andò E (2013) PhD Thesis, Experimental investigation of micro-structural changes in deforming granular media using X-ray tomography, Université de Grenoble

  2. Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech 7:1–13. doi:10.1007/s11440-011-0151-6

    Article  Google Scholar 

  3. Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Experimental micromechanics: grain-scale observation of sand deformation. Géotech Lett 2:107–112. doi:10.1680/geolett.12.00027

    Article  Google Scholar 

  4. Andò E, Hall SA, Viggiani G, Desrues J (2013) Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges. Géotech Lett 3:142–146. doi:10.1680/geolett.13.00036

    Article  Google Scholar 

  5. Antonellini M, Aydin A (1994) Effect of faulting on fluid flow in porous sandstones; petrophysical properties. AAPG Bull 78:355–377

    Google Scholar 

  6. Aydin A, Berryman J (2010) Analysis of the growth of strike-slip faults using effective medium theory. J Struct Geol 32:1629–1642. doi:10.1016/j.jsg.2009.11.007

    Article  Google Scholar 

  7. Baud P, Klein E, Wong T (2004) Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. J Struct Geol 26:603–624. doi:10.1016/j.jsg.2003.09.002

    Article  Google Scholar 

  8. Bésuelle P (2001) Compacting and dilating shear bands in porous rocks: theoretical and experimental conditions. J Geophys Res 106:13435–13442. doi:10.1029/2001JB900011

    Article  Google Scholar 

  9. Cashman S, Cashman K (2000) Cataclasis and deformation-band formation in unconsolidated marine terrace sand, Humboldt County, California. Geology 28(2):111–114. doi:10.1130/0091-7613(2000)28<111:CADFIU>2.0.CO;2

    Article  Google Scholar 

  10. Colliat-Dangus JL, Desrues J, Foray P (1988) Triaxial testing of granular soi1 under elevated cell pressure. In: Donaghe RT, Chaney RC, Silver ML (eds) Advanced triaxial testing of soi1 and rock, ASTM STP 977. American Society for Testing and Materials, Philadelphia, pp 290–310

    Chapter  Google Scholar 

  11. Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28(4):279–322. doi:10.1002/nag.338

    Article  Google Scholar 

  12. Du Bernard X, Eichhubl P, Aydin A (2002) Dilation bands: a new form of localized failure in granular media. Geophys Res Lett 29(24):2176. doi:10.1029/2002GL015966

    Article  Google Scholar 

  13. Fortin J, Stanchits S, Dresen G, Guéguen Y (2006) Acoustic emission and velocities associated with the formation of compaction bands. J Geophys Res 111:B10203. doi:10.1029/2005JB003854

    Article  Google Scholar 

  14. Fossen H, Schultz RA, Shipton ZK, Mair K (2007) Deformation bands in sandstone: a review. J Geol Soc 164:755–769. doi:10.1144/0016-76492006-036

    Article  Google Scholar 

  15. Hall SA (2006) A methodology for 7D warping and deformation monitoring using time-lapse seismic data. Geophysics 71(4):O21–O31. doi:10.1190/1.2212227

    Article  Google Scholar 

  16. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60:315–322. doi:10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  17. Kim HK, Santamarina J (2008) Sand–rubber mixtures (large rubber chips). Can Geotech J 45(10):1457–1466. doi:10.1139/T08-070

    Article  Google Scholar 

  18. Lothe AE, Gabrielsen RH, Bjørnevoll HN, Larsen T (2002) An experimental study of the texture of deformation bands: effects on the porosity and permeability of sandstones. Pet Geosci 8:195–207. doi:10.1144/petgeo.8.3.195

    Article  Google Scholar 

  19. Miura N, Yamanouchi T (1973) Compressibility and drained shear characteristics of a sand under high confining pressures. Technology reports of the Yamaguchi University 1(2):271–290

  20. Schultz RA, Siddharthan R (2005) A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics 411:1–18. doi:10.1016/j.tecto.2005.07.008

    Article  Google Scholar 

  21. Sibleco France (2011) Fiche Technique Type HN31. http://www.sibelco.fr/item_img/medias/images/ft12_hn31.pdf

  22. Sulem J, Ouffroukh H (2006) Shear banding in drained and undrained triaxial tests on a saturated sandstone: porosity and permeability evolution. Int J Rock Mech Min Sci 43:292–310. doi:10.1016/j.ijrmms.2005.07.001

    Article  Google Scholar 

  23. Torabi A (2014) Cataclastic bands in immature and poorly lithified sandstone, examples from Corsica, France. Tectonophysiscs. doi:10.1016/j.tecto.2014.05.014

  24. Torabi A, Berg S (2011) Scaling of fault attributes: a review. Mar Pet Geol 28(8):1444–1460. doi:10.1016/j.marpetgeo.2011.04.003

    Article  Google Scholar 

  25. Torabi A, Zarifi Z (2014) Energy release rate for propagating deformation bands and their hosted cracks. Int J Rock Mech Min Sci 67:184–190

    Google Scholar 

  26. Torabi A, Fossen H, Alaei B (2008) Application of spatial correlation functions in permeability estimation of deformation bands in porous rocks. J Geophy Res 113:B08208. doi:10.1029/2007JB005455

    Google Scholar 

  27. Vajdova V, Baud P, Wong T (2004) Permeability evolution during localized deformation in Bentheim sandstone. J Geophys Res 109:B10406. doi:10.1029/2003JB002942

    Article  Google Scholar 

  28. Wong T, Baud P (2012) The brittle-ductile transition in porous rock: a review. J Struct Geol 44:25–53. doi:10.1016/j.jsg.2012.07.010

    Article  Google Scholar 

  29. Wong T, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstone: mechanical deformation. J Geophys Res 102:3009–3025. doi:10.1029/96JB03281

    Article  Google Scholar 

  30. Zoback MD, Byerlee JD (1976) Effect of high-pressure deformation on permeability of Ottawa sand. AAPG Bull 60(9):1531–1542

    Google Scholar 

Download references

Acknowledgments

This study is part of the IMPACT Project, a consortium R&D project 207806, at the Centre for Integrated Petroleum Research Uni Research CIPR, funded by the Research Council of Norway and Statoil. The authors would like to thank Alessandro Tengattini for his help in the quantitative analysis and interpretation of the test results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alikarami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikarami, R., Andò, E., Gkiousas-Kapnisis, M. et al. Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotech. 10, 15–30 (2015). https://doi.org/10.1007/s11440-014-0364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0364-6

Keywords

Navigation