Aubry D, Hujeux JC, Lassoudière F, Meimon Y (1982) A double memory model with multiple mechanisms for cyclic soil behavior. In: International symposium Num Mod Geomech, Balkema, pp 3–13
Aubry D, Modaressi A (1996) GEFDyn—manuel scientifique. LMSSMat, Julliet, Ecole Centrale Paris, France
Bazzurro P, Cornell CA (2004) Nonlinear soil-site effects in probabilistic seismic-hazard analysis. Bull Seismol 94(6):2110–2123
Article
Google Scholar
Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112
Article
Google Scholar
Beresnev IA, Wen KL (1996) Nonlinear site response: a reality? Bull Seismol Soc Am 86(6):1964–1978
Google Scholar
Bernardie S, Foerster E, Modaressi H (2006) Non-linear site response simulations in Chang-Hwa region during the 1999 Chi-Chi earthquake, Taiwan. Soil Dyn Earthq Eng 26:1038–1048
Article
Google Scholar
Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179
Article
Google Scholar
Bonilla F, Tsuda K, Pulido N, Régnier J, Laurendeau A (2011) Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63(7):785–789
Article
Google Scholar
Bradley B, Dhakal R, MacRae G, Cubrinovski M (2010) Prediction of spatially distributed seismic demands in specific structures: ground motion and structural response. Earthq Eng Struct Dyn 39(5):501–520
Google Scholar
Byrne PM, Park S-S, Beaty M, Sharp M, Gonzalez L (2004) Numerical modeling of liquefaction and comparison with centrifuge tests. Can Geotech J 41(2):193–211
Article
Google Scholar
Carrilho Gomes R, Santos JA, Modaressi-Farahmand Razavi A, Lopez-Caballero F (2014) Validation of a strategy to predict secant shear modulus and damping of soils with an elastoplastic model. KSCE Journal of Civil Engineering, in print
Chin BH, Aki K (1991) Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: a preliminary result on pervasive nonlinear site effects. Bull Seismol Soc Am 81(5):1859–1884
Google Scholar
Costa D’Aguiar S, Modaressi-Farahmand-Razavi A, Dos Santos JA, Lopez-Caballero F (2011) Elastoplastic constitutive modelling of soil structure interfaces under monotonic and cyclic loading. Comput Geotech 38(4):430–447
Article
Google Scholar
Darendeli MB (2001) Development of a new family of normalized modulus reduction and material damping curves. PhD thesis, The University of Texas, Austin, Texas
Dickenson SE, Seed RB (1996) Nonlinear dynamic response of soft and deep cohesive soil deposits. In: Proceedings of the international workshop on site response subjected to strong earthquake motions, volume 2, Yokosuka, Japan, pp 67–81
Foerster E, Modaressi H (2007b) Nonlinear numerical methods for earthquake site response analysis II—case studies. Bull Earthq Eng 5(3):325–345
Article
Google Scholar
Foerster E, Modaressi H (2007) A diagonal consistent mass matrix for earthquake site response simulations. In: 4th international conference on earthquake geotechnical engineering, Thessaloniki, Greece
Hartvigsen A (2007) Influence of pore pressures in liquefiable soils on elastic response spectra. Master’s thesis. University of Washington
Hujeux JC (1985) Génie Parasismique: Une loi de comportement pour le chargement cyclique des sols, v. davidovici edition. Presses ENPC, Champs-sur-Marne, pp 278–302
Idriss IM (1990) Influence of local site conditions on earthquake ground motions. In: Proceedings of IV U.S. Nat. Conf. on earthquake engineering, volume 1, Palm Springs, California
Iervolino I, Cornell CA (2005) Record selection for nonlinear seismic analysis of structures. Earthq Spectra 21(3):685–713
Article
Google Scholar
Ishihara K (1993) Liquefaction and flow failure during earthquakes. Géotechnique 43(3):351–415
Article
Google Scholar
Jafarian Y, Abdollahi AS, Vakili R, Baziar MH, Noorzad A (2011) On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: a numerical study. Comput Geotech 38(6):800–808
Article
Google Scholar
Kontoe S, Zdravkovic L, Potts D (2008) An assessment of time integration schemes for dynamic geotechnical problems. Comput Geotech 35(2):253–264
Article
Google Scholar
Koutsourelakis S, Prévost JH, Deodatis G (2002) Risk assessment of an interacting structure–soil system due to liquefaction. Earthq Eng Struct Dyn 31:851–879
Article
Google Scholar
Kramer SL, Hartvigsen AJ, Sideras SS, Ozener PT (2011) Site response modeling in liquefiable soil deposits. In: 4th IASPEI/IAEE international symposium: effects of surface geology on seismic motion, pp 1–12
Kramer SL (1996) Geotechnical earthquake engineering, 1st edn. Prentice-Hall, Upper Saddle River
Google Scholar
Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599
Article
MathSciNet
MATH
Google Scholar
Lopez-Caballero F, Modaressi-Farahmand-Razavi A, Modaressi H (2007) Nonlinear numerical method for earthquake site response analysis I—elastoplastic cyclic model and parameter identification strategy. Bull Earthq Eng 5(3):303–323
Article
Google Scholar
Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2010) Assessment of variability and uncertainties effects on the seismic response of a liquefiable soil profile. Soil Dyn Earthq Eng 30(7):600–613
Article
Google Scholar
Lopez-Caballero F, Modaressi A (2011) Numerical analysis: specification and validation of used numerical methods. FP7-SME-2010-1-262161. PREMISERI project, Paris, France
Modaressi H, Benzenati I (1994) Paraxial approximation for poroelastic media. Soil Dyn Earthq Eng 13(2):117–129
Article
Google Scholar
Popescu R, Prevost JH, Deodatis G (2005) 3D effects in seismic liquefaction of stochastically variable soil deposits. Géotechnique 55(1):21–31
Article
Google Scholar
Popescu R, Prévost JH, Deodatis G, Chakrabortty P (2006) Dynamics of nonlinear porous media with applications to soil liquefaction. Soil Dyn Earthq Eng 26(6):648–665
Article
Google Scholar
Raghunandan M, Liel AB (2013) Effect of ground motion duration on earthquake-induced structural collapse. Struct Saf 41:119–133
Article
Google Scholar
Roscoe KH, Pooroshasb HB (1963) A fundamental principle of similarity in model tests for earth pressure problems. In: Proceedings of 2nd Asian regional conference on soil mechanics, volume 1,Tokyo, pp 134–140
Ruiz S, Saragoni GR (2009) Free vibration of soils during large earthquakes. Soil Dyn Earthq Eng 29:1–16
Article
Google Scholar
Saez E (2009) Dynamic non-linear soil structure interaction. PhD thesis, Ecole Centrale Paris
Saez E, Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2013) Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Eng Struct 51(1):166–177
Article
Google Scholar
Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Report No. EERC 72–12. Earthquake Engineering Research Center
Seed HB, Murarka J, Lysmer J, Idriss IM (1976) Relationships between maximum acceleration, maximum velocity, distance from source and local site conditions for moderately strong earthquakes. Bull Seismol Soc Am 66(4):1323–1342
Google Scholar
Shinozuka M, Ohtomo K (1989) Proceedings of the second US-Japan workshop in liquefaction, large ground deformation and their effects on lifelines, technical report Spatial severity of liquefaction, NCEER, pp 193–206
Sica S, Pagano L, Modaressi A (2008) Influence of past loading history on the seismic response of earth dams. Comput Geotech 35(1):61–85
Article
Google Scholar
Sorrentino L, Kunnath S, Monti G, Scalora G (2008) Seismically induced one-sided rocking response of unreinforced masonry facades. Eng Struct 30(8):2140–2153
Article
Google Scholar
Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bull Seismol Soc Am 65(3):581–626
Google Scholar
Yoshida N (2013) Applicability of total stress seismic ground response analysis under large earthquakes. In: COMPDYN2013: 4th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Kos Island, Greece, p 13
Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Leslie F, Hynes ME, Ishihara K, Koester JP, Liao SS, William F, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe II, Kenneth H (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng 127(10):816–833
Article
Google Scholar
Yu G, Anderson JG, Siddharthan R (1993) On the characteristics of nonlinear soil response. Bull Seismol Soc Am 83(1):218–244
Google Scholar
Zienkiewicz OC, Shiomi T (1984) Dynamic behavior of saturated porous media: the generalised Biot formulation and its numerical solution. Int J Numer Anal Methods Geomech 8(1):71–96
Article
MATH
Google Scholar
Z
ienkiewicz OC, Taylor RL (1991) The Finite element method, solid and fluid mechanics, dynamics and non-linearity, vol 2, 4th edn. McGraw-Hill Book Company, London
Google Scholar