Acta Geotechnica

, Volume 11, Issue 2, pp 325–346 | Cite as

Physical evidence of the effect of vertical cyclic loading on soil improvement by rigid piles: a small-scale laboratory experiment using Digital Image Correlation

  • Moustafa Houda
  • Orianne JenckEmail author
  • Fabrice Emeriault
Research Paper


This paper presents an experimental study focusing on the mechanisms taking place in a granular platform supported by piles in soft soil under vertical cyclic loading. An original three-dimensional laboratory model was developed, with a scale factor of 1/10 on the length. The model contains 20 rigid piles, and the compressible soil is explicitly simulated by a soft material. The case of a thin granular load transfer platform overlaid by a rigid slab is studied. Tests were performed under monotonic or cyclic loading applied on the surface using a pressurized membrane. The analysis is based on a force and displacement sensor instrumentation and application of a Digital Image Correlation technique. The evaluation of the load transfer onto the piles and the settlements in the platform are some of the main points under the scope of this study. The effect of the cyclic loading and the sequence of loading on the structure’s response are examined by a comparative study between the series of cyclic and monotonic tests. Settlement accumulation and increase in the load transmitted to the piles were observed during the cycles. The image analysis gives access to the displacement field within the granular platform, and its evolution during the cycles could be analysed.


Cyclic loading Digital Image Correlation Granular platform Rigid piles Three-dimensional laboratory model 

List of symbols


Recovery ratio (%)


Pile diameter (mm)


Pile height (mm)


Pile spacing


Height of the soft soil (mm)


Thickness of the LTP (mm)


Unit weight of the LTP (kN/m3)


Vertical force at the top of the pile (kN)


Average of the forces at top of the four central piles (kN)

D1, D2, D3

Settlements at the platform base (mm)


Water content of the soft soil (%)


Stress applied by the water membrane on the surface (kPa)


Internal friction angle of the LTP (degree)


Cohesion of the LTP (kPa)


Dead load: weight of the LPT, rigid plate and water inside the membrane (kN)


Live load: overload at the surface (kN)


Pile efficiency: \( E_{i} = \frac{{Ft_{i} }}{{{\text{DL}} + {\text{LL}}}} \)


Average efficiency of the four central piles



The authors are grateful to the French National Federation of Public Work (FNTP) for providing financial support, especially to Philippe Gotteland and the director of the Technique and Research Department. The authors would like to express their gratitude to Gael Combe for his help in the image analysis and in the practice of the programme “Tracker”.


  1. 1.
    Barchard J (2002) Centrifuge modelling of piled embankments on soft soils. Master of Science of Engineering, University of New Brunswick, CanadaGoogle Scholar
  2. 2.
    Baudouin G (2010) Sols renforcés par inclusions rigides: modélisation physique en centrifugeuse de remblais et de dallage. PhD thesis, LUNAM University (in French)Google Scholar
  3. 3.
    Bergdahl U, Lingfors R, Nordstrand R, Nordstrand P (1979) The mechanics of piled embankments. No. SG3-79, Swedish Geotechnical Institute, pp 310–320Google Scholar
  4. 4.
    Blanc M, Rault G, Thorel L, Almeida M (2013) Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network. Geotext Geomembr 36:92–105CrossRefGoogle Scholar
  5. 5.
    Briançon L, Villard P (2008) Design of geosynthetic-reinforced platforms spanning localized sinkholes. Geotext Geomembr 26:416–428CrossRefGoogle Scholar
  6. 6.
    Briançon L, Kastner R, Simon B, Dias D (2004) Etat des connaissances—Amélioration des sols par inclusions rigides. In: Dhouib A, Magnan J-P, Mestat P (eds) Proceedings of symposium international sur l’Amélioration des Sols en Place. ASEP-GI, 9-10 septembre 2004, Paris. Presses de l’Ecole Nationale des Ponts et Chaussées, ParisGoogle Scholar
  7. 7.
    Chen Y-M, Cao W-P, Chen R-P (2008) An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext Geomembr 26:164–174CrossRefGoogle Scholar
  8. 8.
    Chevalier B, Villard P, Combe G (2011) Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions. Int J Geomech 11:239–250CrossRefGoogle Scholar
  9. 9.
    Combarieu O (2008) Remblais sur sol compressible et inclusions rigides. Amélioration de l’approche du dimensionnement. Rev Fr Géotech 122:45–54Google Scholar
  10. 10.
    Combe G, Richefeu V (2013) Tracker: a Particle Image Tracking (PIT) technique dedicated to nonsmooth motions involved in granular packings powders and grains 2013, July 8–12, UNSW, Sydney, AustraliaGoogle Scholar
  11. 11.
    Demerdash MA (1996) An experimental study of piled embankments incorporating geosynthetic basal reinforcement. PhD thesis, University of Newcastle Upon TyneGoogle Scholar
  12. 12.
    Dinh AQ (2010) Étude sur modèle physique des mécanismes de transfert de charge dans les sols renforcés par inclusions rigides. Application au dimensionnement. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (in French)Google Scholar
  13. 13.
    Ellis E, Aslam R (2009) Arching in piled embankments: comparison of centrifuge tests and predictive methods-part 1 of 2. Ground Eng 42:34–38Google Scholar
  14. 14.
    Ellis EA, Aslam R (2009) Arching in piled embankments: comparison of centrifuge tests and predictive methods-part 2 of 2. Ground Eng 42:28–31Google Scholar
  15. 15.
    Eskişar T, Otani J, Hironaka J (2012) Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotext Geomembr 32:44–54CrossRefGoogle Scholar
  16. 16.
    Heitz C, Luking J, Kempfert H-G (2008) Geosynthetic reinforced and pile supported embankments under static and cyclic Loading. In: Proceedings of the 4th European Geosynthetics Conf EuroGeo4, Edinburgh (UK), paper no 215Google Scholar
  17. 17.
    Hewlett WJ, Randolph MF (1988) Analysis of piled embankment. Ground Eng 21:12–18Google Scholar
  18. 18.
    Horgan G, Sarsby R (2002) The arching effect of soils over voids and piles incorporating geosynthetic reinforcement. In: Delmas, Gourc, Girard (eds) Proceedings, 7th international conference on geosynthetics. Swets and Zeitlinger, Nice, pp 373–378Google Scholar
  19. 19.
    IREX (2012) Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration—Projet National ASIRI—Recommendations for the design, construction and control of rigid inclusion ground improvements: ASIRI National Project. Presses des Ponts, ParisGoogle Scholar
  20. 20.
    Jenck O (2005) Le renforcement des sols compressibles par inclusions rigides verticales. Modélisation physique et numérique. PhD thesis, INSA Lyon (in French)Google Scholar
  21. 21.
    Jenck O, Dias D, Kastner R (2007) Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil. J Geotech Geoenviron Eng 133:295–305CrossRefGoogle Scholar
  22. 22.
    Jenck O, Dias D, Kastner R (2009) Three-dimensional numerical modeling of a piled embankment. Int J Geomech 9:102–112CrossRefGoogle Scholar
  23. 23.
    Jenck O, Combe G, Emeriault F, De Pasquale A (2014) Arching effect in a granular soil subjected to monotonic or cyclic loading: kinematic analysis. In: 8th international conference on physical modelling in geotechnics, Perth, Australia, 14–17 January 2014Google Scholar
  24. 24.
    Kempfert HG, Göbel C, Alexiew D, Heitz C (2004) German recommendations for reinforced embankments on pile-similar elements. In: EuroGeo3-3rd European geosynthetics conference, Geotech Eng with Geosynthetics, pp 279–284Google Scholar
  25. 25.
    Le Hello B, Villard P (2009) Embankments reinforced by piles and geosynthetics, Numerical and experimental studies dealing with the transfer of load on the soil embankment. Eng Geol 106:78–91CrossRefGoogle Scholar
  26. 26.
    Low BK, Tang SK, Choa V (1994) Arching in piled embankments. J Geotech Eng 120:1917e1938Google Scholar
  27. 27.
    Magnan J-P (1994) Methods to reduce the settlement of embankments on soft clay: a review. Vertical and horizontal deformations of foundations and embankments ASCE Geotech Spec Publ 40:77–91Google Scholar
  28. 28.
    Murff JD (1980) Pile capacity in a softening soil. Int J Numer Anal Methods Geomech 4(2):185–189CrossRefzbMATHGoogle Scholar
  29. 29.
    Okyay US, Dias D, Thorel L, Rault G (2013) Centrifuge modeling of a pile-supported granular earth-platform. J Geotech Geoenviron Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001004 Google Scholar
  30. 30.
    Poulos HG, Randolph MF (1983) Pile group analysis: a study of two methods. J Geotech Eng 109(3):355–372 Google Scholar
  31. 31.
    Richefeu V, Combe G, Viggiani G (2012) An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Géotech Lett 2:113–118CrossRefGoogle Scholar
  32. 32.
    Sadek S, Iskander M, Liu J (2003) Accuracy of digital image correlation for measuring deformation in transparent media. J Comput Civ Eng 17(2):88–96CrossRefGoogle Scholar
  33. 33.
    Scott R (1988) Physical and numerical models, centrifuges in soil mechanics. Balkema, Rotterdam, pp 103–115Google Scholar
  34. 34.
    Van Eekelen SJM, Bezuijen A, Lodder HJ, Van Tol AF (2012) Model experiments on piled embankments. Part I. Geotext Geomembr 32:69–81CrossRefGoogle Scholar
  35. 35.
    Van Eekelen SJM, Bezuijen A, Lodder HJ, Van Tol AF (2012) Model experiments on piled embankments. Part II. Geotext Geomembr 32:82–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Moustafa Houda
    • 1
  • Orianne Jenck
    • 1
    Email author
  • Fabrice Emeriault
    • 1
  1. 1.3SR Lab, CNRS UMR 5521, Grenoble-INPUJF-Grenoble 1GrenobleFrance

Personalised recommendations