Acta Geotechnica

, Volume 10, Issue 1, pp 157–171 | Cite as

Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction

  • Laura Morales
  • Enrique RomeroEmail author
  • Cristina Jommi
  • Eduardo Garzón
  • Antonio Giménez
Research Paper


Increasing demand for infrastructures requires innovative, cheap and environmental sustainable practices in construction. The soils which are available on site for linear embankments often need to be improved to satisfy the necessary performance and strength requirements. A bio-improvement is evaluated here, for use in compacted earth construction. To the aim of sustainability and cost reduction, a soft technique was chosen by the industrial party, which consisted in adding bacteria to a superficial soil retrieved in situ, and letting them precipitate calcium carbonate with the aid of the nutrients available in the organic matter of the soil and in the compaction water. The effects of the soft biological treatment on silty clayey sand were studied systematically in a comprehensive laboratory investigation, focused on the properties mostly affecting the performance of earth constructions: compaction energy, water retention, hydraulic conductivity, small-strain shear stiffness, collapse potential and shear strength. Mercury intrusion porosimetry tests and scanning electron microscopy were performed to help in providing a comprehensive picture of the consequences of the soft biological treatment on the natural soil. Lack in artificial nutrients reduces the efficiency of the biological treatment with respect to other cases reported in the literature. Nonetheless, organogenic aggregates and bonds are created during mixing and ageing, as detected from small-stiffness measurement during the curing time lapse. The bio-cemented bonds are mostly broken during compaction, while the aggregated structure remains, and the fine fraction generated by broken bonds ends in acting as filler of some inter-grain and inter-aggregate porosity. Eventually, the effects of the adopted technique on the hydro-mechanical behaviour of the compacted soil can be described in a coherent picture as the result of bio-filling of an aggregated compacted soil fabric.


Compacted soil Hydro-mechanical properties Laboratory investigation Microbiological treatment Microstructure 



The initial part of the work was performed within the framework of BIOLIN project ‘Biotecnología de Obras Lineales’ between ACCIONA Infraestructuras and the University of Almería. The results presented herein are those of the authors only and do not, necessarily, reflect the views of the company (ACCIONA Infraestructuras). The first author wishes to acknowledge the University of Almería for providing research grant. Special thanks to the Department of Applied Biology (University of Almería) for assisting in the microbiological analysis. The authors acknowledge the contribution of Dr. Jubert Pineda in the experimental set-up and interpretation of the bender elements results.


  1. 1.
    Al-Thawadi S (2008) High strength in situ biocementation of soil by precipitating locally isolated ureolytic bacteria. PhD Thesis, Murdoch UniversityGoogle Scholar
  2. 2.
    Anderson DG, Stokoe KH (1978) Shear modulus: a time dependent soil property. Dynamic Geotechnical Testing, ASTM STP 654-EB, Philadelphia, pp 66–90. doi: 10.1520/STP35672S
  3. 3.
    Arroyo M, Pineda JA, Romero E (2010) Shear wave measurements using bender elements in argillaceous rocks. Geotech Test J 33(6):488–498. doi: 10.1520/GTJ102872 Google Scholar
  4. 4.
    Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater 1(1):28–39. doi: 10.1080/19475411003593451 CrossRefGoogle Scholar
  5. 5.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  6. 6.
    Boquet E, Boronat A, Ramos Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529. doi: 10.1038/246527a0 CrossRefGoogle Scholar
  7. 7.
    Burbank MB, Weaver TJ, Green TL, Williams B, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28(4):301–312. doi: 10.1080/01490451.2010.499929 CrossRefGoogle Scholar
  8. 8.
    Castanier S, Le Métayer-Levrel G, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23. doi: 10.1016/S0037-0738(99)00028-7 Google Scholar
  9. 9.
    Chou C, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189. doi: 10.1061/(ASCE)GT.1943-5606.0000532 CrossRefGoogle Scholar
  10. 10.
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi: 10.1016/j.ecoleng.2009.02.006 CrossRefGoogle Scholar
  11. 11.
    DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381) CrossRefGoogle Scholar
  12. 12.
    DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210. doi: 10.1016/j.ecoleng.2008.12.029 CrossRefGoogle Scholar
  13. 13.
    Dennis ML, Turner JP (1998) Hydraulic conductivity of compacted soil treated with biofilm. J Geotech Geoenviron Eng 124(2):120–127. doi: 10.1061/(ASCE)1090-0241(1998)124:2(120) CrossRefGoogle Scholar
  14. 14.
    Dick J, De Windt W, De Graef B, Saveyn H, Van Der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi: 10.1007/s10532-005-9006-x CrossRefGoogle Scholar
  15. 15.
    Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. J Can Pet Technol 35(8):56–61. doi: 10.2118/96-08-06 CrossRefGoogle Scholar
  16. 16.
    Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17(4):305–318. doi: 10.1080/782198884 CrossRefGoogle Scholar
  17. 17.
    Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68(15):3261–3270. doi: 10.1016/j.gca.2003.12.018 CrossRefGoogle Scholar
  18. 18.
    Fujita Y, Taylor JL, Gresham TLT, Delwiche ME, Colwell FS, Mcling TL, Petzke LM, Smith RW (2008) Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ Sci Technol 42(8):3025–3032. doi: 10.1021/es702643g CrossRefGoogle Scholar
  19. 19.
    Fujita Y, Taylor JL, Wendt LM, Reed DW, Smith RW (2010) Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ Sci Technol 44(19):7652–7658. doi: 10.1021/es101752p CrossRefGoogle Scholar
  20. 20.
    Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30(4):695–705. doi: 10.1016/0045-6535(94)00435-W CrossRefGoogle Scholar
  21. 21.
    Gray D, Sotir RB (1996) Biothechnical and soil bioengineering slope stabilization. A practical guide for erosion control. Wiley, New YorkGoogle Scholar
  22. 22.
    Hamdan N, Kavazanjian Jr E, Rittmann B, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 3925–3934. doi: 10.1061/41165(397)401
  23. 23.
    Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1(1):3–7. doi: 10.1023/A:1015135629155 CrossRefGoogle Scholar
  24. 24.
    Hammes F, Seka A, De Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37(3):699–704. doi: 10.1016/S0043-1354(02)00308-1 CrossRefGoogle Scholar
  25. 25.
    Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117. doi: 10.1016/j.ecoleng.2009.01.004 CrossRefGoogle Scholar
  26. 26.
    Ismail MA, Joer HA, Randolph MF, Meritt A (2002) Cementation of porous materials using calcite. Géotechnique 52:313–324CrossRefGoogle Scholar
  27. 27.
    Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci BioTechnol 7(2):139–153. doi: 10.1007/s11157-007-9126-3 CrossRefGoogle Scholar
  28. 28.
    Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi: 10.1016/j.chemosphere.2007.02.044 CrossRefGoogle Scholar
  29. 29.
    Latil MN, van der Zon W, Lehnen C, Ineke E, Marcelis F, van Eijden J, Baaijens T, Baaijens T, Bol G (2008) Environmental friendly technology for biological sand consolidation of oil and gas wellbore. Proceedings of first international BioGeoCivil Engineering conference (BGCE 2008). Delft, The NetherlandsGoogle Scholar
  30. 30.
    Li J, Hu M, Du J, Wang Z, Zhang Y (2011) Cultivation and acclimation of anaerobic granule sludge for trichloroethylene (TCE) degradation. Proceedings of 5th international conference on bioinformatics and biomedical engineering, iCBBE 2011, Wuhan 1–3. doi: 10.1109/icbbe.2011.5781140
  31. 31.
    Manning DAC (2008) Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineral Mag 72(2):639–649. doi: 10.1180/minmag.2008.072.2.639 CrossRefGoogle Scholar
  32. 32.
    Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: Load transfer mechanisms at the micro- and macro- scales. GeoFlorida 2009: Advances in Ground Improvement: Research to Practice in the United States and China. Orlando, Florida, United States. ASCE Geotechnical Special Publication GSP 188 242–251. doi: 10.1061/41025(338)26
  33. 33.
    Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222) CrossRefGoogle Scholar
  34. 34.
    Morales L, Romero E, Garzón E (2009) BIOLIN: Biotecnología de Obras Lineales. Project Report (in Spanish), Universidad de Almería, SpainGoogle Scholar
  35. 35.
    Morales L, Garzón E, Romero E, Jommi C (2011) Effects of a microbiological compound for the stabilisation of compacted soils on their microstructure and hydro-mechanical behaviour. Proceedings of 5th international conference on unsaturated soils. Barcelona, Spain. Unsaturated Soils, CRC Press 1:573–578. doi: 10.1201/b10526-86
  36. 36.
    Morales L, Romero E, Pineda JA, Garzón E, Giménez A (2012) Ageing effects on the stiffness behaviour of a microbiologically treated and compacted soil. Unsaturated Soils Res Appl 1:371–376. doi: 10.1007/978-3-642-31116-1_50 CrossRefGoogle Scholar
  37. 37.
    Mortensen BM, Dejong JT (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 4012–4020. doi: 10.1061/41165(397)410
  38. 38.
    Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microb Technol 33(5):635–642. doi: 10.1016/S0141-0229(03)00191-1 CrossRefGoogle Scholar
  39. 39.
    Ozdogan A (2010) A study on the triaxial shear behavior and microstructure of biologically treated sand specimens. PhD Thesis, University of DelawareGoogle Scholar
  40. 40.
    Phadnis HS, Santamarina JC (2011) Bacteria in sediments: pore size effects. Géotechnique Lett 1:91–93. doi: 10.1680/geolett.11.00008 CrossRefGoogle Scholar
  41. 41.
    Pineda JA (2012) Swelling and degradation of argillaceous rocks induced by relative humidity effects: an experimental study. PhD Thesis, Universitat Politècnica de Catalunya, SpainGoogle Scholar
  42. 42.
    Qabany AA, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001. doi: 10.1061/(ASCE)GT.1943-5606.0000666 CrossRefGoogle Scholar
  43. 43.
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9. doi: 10.14359/10154 Google Scholar
  44. 44.
    Rebata-Landa V, Santamarina JC (2006) Mechanical limits to microbial activity in deep sediments. Geochem Geophys Geosyst 7:Q11006. doi: 10.1029/2006GC001355 CrossRefGoogle Scholar
  45. 45.
    Renforth P, Manning DAC, Lopez-Capel E (2009) Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Appl Geochem 24(9):1757–1764. doi: 10.1016/j.apgeochem.2009.05.005 CrossRefGoogle Scholar
  46. 46.
    Rodriguez-Navarro C, Cazalla O, Elert K, Sebastian E (2002) Liesegang pattern development in carbonating traditional lime mortars. Proc R Soc Lond A 458(2025):2261–2273. doi: 10.1098/rspa.2002.0975 CrossRefGoogle Scholar
  47. 47.
    Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328. doi: 10.1680/geot.2011.61.4.313 CrossRefGoogle Scholar
  48. 48.
    Stabnikov V, Naeimi M, Ivanov V, Chu J (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41(11):1143–1149. doi: 10.1016/j.cemconres.2011.06.017 CrossRefGoogle Scholar
  49. 49.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571. doi: 10.1016/S0038-0717(99)00082-6 CrossRefGoogle Scholar
  50. 50.
    Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36(1–2):139–145. doi: 10.1016/S0167-7012(99)00019-6 CrossRefGoogle Scholar
  51. 51.
    van Paassen LA (2009) Biogrout, ground improvement by microbially induced carbonate precipitation. PhD Thesis, Delft University of TechnologyGoogle Scholar
  52. 52.
    van Paassen LA (2011) Bio-mediated ground improvement: From laboratory experiment to pilot applications. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 4099–4108. doi: 10.1061/41165(397)419
  53. 53.
    van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175. doi: 10.1016/j.ecoleng.2009.03.026 CrossRefGoogle Scholar
  54. 54.
    Warren LA, Maurice PA, Parmar N, Ferris GF (2001) Microbially mediated calcium carbonate precipitation: implications for Interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18(1):93–115. doi: 10.1080/01490450151079833 CrossRefGoogle Scholar
  55. 55.
    Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702. doi: 10.1039/A604512J CrossRefGoogle Scholar
  56. 56.
    Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423. doi: 10.1080/01490450701436505 CrossRefGoogle Scholar
  57. 57.
    Yang P, Wendisch M, Bi L, Kattawar G, Mishchenko M, Hu Y (2011) Dependence of extinction cross-section on incident polarization state and particle orientation. J Quant Spectrosc Radiat Transfer 112(2):2035–2039. doi: 10.1016/j.jqsrt.2011.04.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Morales
    • 1
  • Enrique Romero
    • 2
    Email author
  • Cristina Jommi
    • 3
  • Eduardo Garzón
    • 1
  • Antonio Giménez
    • 1
  1. 1.Departamento de IngenieriaUniversidad de AlmeríaAlmeríaSpain
  2. 2.Department of Geotechnical Engineering and GeosciencesUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Department of Geoscience and Engineering, Faculty of Civil Engineering and GeoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations