Acta Geotechnica

, Volume 10, Issue 2, pp 219–229 | Cite as

A new model for the description of the heat transfer for plane thermo-active geotechnical systems based on thermal resistances

  • Sylvia KürtenEmail author
  • Darius Mottaghy
  • Martin Ziegler
Research Paper


In this paper, a thermal resistance model for an energy wall using the example of thermo-active seal panels is presented. In the developed model, the resistances of the pipes as well as the resistance of the structure itself are considered. The resistance model is transferred to a 2D finite difference model, which itself is implemented into the general 3D subsurface heat and flow transport code SHEMAT-Suite. This coupling of a semi-analytical model with a numerical code avoids a complete discretisation of the model domain and thus enables fast computing times. This new approach has been verified by pure finite element simulations and by laboratory tests.


Energy wall Groundwater flow Laboratory tests Numerical simulations Thermal resistances 



The development of the thermo-active seal panels was funded by the Federal Office for Building and Regional Planning (BBR) and was done in cooperation with the company NAUE GmbH & Co. KG. The development of the thermal resistance model is funded by the “Deutsche Bundesstiftung Umwelt” (DBU). The authors thanks all of them for the support.


  1. 1.
    Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3):229–236CrossRefGoogle Scholar
  2. 2.
    Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122CrossRefGoogle Scholar
  3. 3.
    Clauser C (ed) (2003) Numerical simulation of reactive flow in hot aquifers using SHEMAT and processing SHEMAT. Springer, HeidelbergGoogle Scholar
  4. 4.
    Franzius JN, Pralle N (2011) Turning segmental tunnels into sources of renewable energy. Proc Inst Civ Eng 164(1):35–40CrossRefGoogle Scholar
  5. 5.
    Glück B (1982) Strahlungsheizung—Theorie und Praxis. C.F. Müller, KarlsruheGoogle Scholar
  6. 6.
    Lamarche L, Kajil S, Beauchamp B (2010) A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2):187–200CrossRefGoogle Scholar
  7. 7.
    Koschenz M, Dorer V (1999) Interaction of an air system with concrete core conditioning. Energy Build 30(1999):139–145CrossRefGoogle Scholar
  8. 8.
    Kürten S (2011) Use of geothermal energy with thermo-active seal panels. In: Barends et al. (ed) Geotechnical engineering: new horizons. doi: 10.3233/978-1-60750-808-3-327
  9. 9.
    Kürten S, Ziegler M, Olischläger V, Ehrenberg H (2012) Untersuchungen zur Effizienz von thermo-aktiven Abdichtungselementen zur thermischen Nutzung des Untergrunds. Bautechnik 89(3):192–199CrossRefGoogle Scholar
  10. 10.
    Kürten S, Ziegler M, Ehrenberg H, Mottaghy D (2013) Beschreibung des Einflusses einer Grundwasserströmung auf den Wärmeertrag von flächigen thermo-aktiven Bauteilen. In: österreichischer Ingenieur- und Architekten-Verein (ed) 9. österreichische Geotechniktagung mit “Vienna-Terzaghi Lecture”, 24. und 25. Jänner 2013: 173–182, ISBN 978-3-902450-02-9Google Scholar
  11. 11.
    Kürten S, Mottaghy D, Ziegler M (2013) Wärmeübergangswiderstand bei flächigen thermo-aktiven Bauteilen am Beispiel thermo-aktiver Abdichtungselemente. Bautechnik 90(7):387–394CrossRefGoogle Scholar
  12. 12.
    Mihalakakou G (2002) On estimating soil surface temperature profiles. Energy Build 34:251–259CrossRefGoogle Scholar
  13. 13.
    Mottaghy D, Dijkshoorn L (2012) Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code. Renew Energy 45:59–71CrossRefGoogle Scholar
  14. 14.
    Rath V, Wolf A, Bücker M (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification and synthetic examples. Geophys J Int 167(1):453–466CrossRefGoogle Scholar
  15. 15.
    Schneider M, Moormann C (2010) GeoTU6—a geothermal research project for tunnels. Tunnel 2:14–21Google Scholar
  16. 16.
    VDI-Wärmeatlas (2006) 10. Auflage. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvia Kürten
    • 1
    Email author
  • Darius Mottaghy
    • 2
  • Martin Ziegler
    • 1
  1. 1.Geotechnical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Geophysica Beratungsgesellschaft mbHAachenGermany

Personalised recommendations