Skip to main content

Advertisement

Log in

Heat-exchanger piles for the de-icing of bridges

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Of the various types of road structures, bridges are the most exposed to icing; the problem of icing is widely addressed through salting, which reduces the lifespan of the bridge. One promising solution to avoid the use of salt is the seasonal storage of solar heat energy captured directly through the asphalt layer; however, this solution can only be achieved cost effectively if a necessary geostructure is used as a heat exchanger. In this study, such an approach is studied for a bridge crossing a canal, and the geotechnical and energy-related challenges of such a solution are discussed. Bridge piers and abutments are located on piles, which are used as heat exchangers. Depending on local conditions, seasonal storage and natural thermal reload are two possible solutions for the operation of such a system. In particular, the presence of underground water flow is thought to be a significant factor in such a design and is considered here. This study aims to determine the geotechnical and energy design parameters through thermo-hydro-mechanical simulations. A three-dimensional finite-element model analysis is necessary given the distance between bridge piles. Various underground water flow scenarios are studied. The capture of energy and de-icing requirements is based on the few existing structures that use other means of energy exchange with the ground. The results indicate that the use of heat-exchanger piles for de-icing bridges can only be considered at specific sites; however, the efficiency of the solution at those sites is high. Possible foundation and structure stability problems are also considered, such as vertical displacements due to the dual use of the foundation piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Amatya B, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  2. ASHRAE (1995) Snow melting. In: ASHRAE (ed) Heating, ventilating and air-conditioning Applications, vol 4. ASHRAE Handbook. Atlanta, pp 46.41–13

  3. Bertrand J (1986) Palier 10—Les Evouettes, étude hydrogéologique: rapport sur l’état de la nappe d’eau souterraine après trois années d’étude (1983–1985). Evaluation des impacts d’un barrage sur la nappe et recommendations, Hydro-Rhône SA pour EOS (in French)

  4. Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248

    Article  Google Scholar 

  5. Charlier R (1987) Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis. PhD thesis, Université de Liège, Belgium (in French)

  6. Charlier R, Radu J-P, Collin F (2001) Numerical modelling of coupled transient phenomena. Rev Fr Génie Civ 5(6):719–743

    Article  Google Scholar 

  7. Chiasson A, Spitler J (2001) Modeling approach to design of a ground-source heat pump bridge deck heating system. Transp Res Rec J Transp Res Board 1741(1):207–215

    Article  Google Scholar 

  8. Collin F (2003) Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés. PhD thesis, Université de Liège, Belgium (in French)

  9. Conus & Bignens, Amsler Bombeli & Associés (2009) Rapport géotechnique pour le Pont sur le Grand Canal, H144 (in French)

  10. Dupray F, Mimouni T, Laloui L (2013) Alternative uses of heat-exchanger geostructures. In: Laloui L, Di Donna A (eds) Energy geostructures. Wiley, Hoboken, pp 119–138

    Chapter  Google Scholar 

  11. Dupray F, Laloui L, Kazangba A (2014) Numerical analysis of seasonal heat storage in an energy pile foundation. Comput Geotech 55:67–77

    Article  Google Scholar 

  12. Eugster WJ, Schatzmann J (2002) Harnessing solar energy for winter road clearing on heavily loaded expressways. Paper presented at the XIth PIARC Winter Road Congress, Sapporo, Japan, 28–31 Jan 2002

  13. Knellwolf C, Péron H, Laloui L (2011) Geotechnical analysis of heat exchanger piles. J Geotech Geoenviron Eng (ASCE) 137(10):890–902

    Article  Google Scholar 

  14. Laloui L, Di Donna A (eds) (2013) Energy Geostructures: Innovation in underground engineering. Civil engineering and geomechanics series. ISTE Ltd. and John Wiley and Sons, Hoboken

    Google Scholar 

  15. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8):763–781

    Article  Google Scholar 

  16. Liu X, Rees SJ, Spitler JD (2007) Modeling snow melting on heated pavement surfaces. Part I: Model development. Appl Therm Eng 27(5–6):1115–1124

    Article  Google Scholar 

  17. Mackert K-U (2011) Kanalbrücke Berkenthin mit temperierter Fahrbahn (A bridge with thermally-controlled roadway in Berkenthin). Paper presented at the Expertengespräch Stahlbrückenbau, Bergisch Gladbach, DE, 27 Sept 2011 (in German)

  18. Mattsson N, Steinmann G, Laloui L (2008) Advanced compact device for the in situ determination of geothermal characteristics of soils. Energy Build 40(7):1344–1352

    Article  Google Scholar 

  19. Minsk LD (1999) Heated bridge technology: Report on ISTEA Sec. 6005 Program FHWA-RD-99-158, Federal Highway Administration, Washington, DC, USA

  20. Miyamoto S, Takeuchi M (2002) Snow-melting and de-icing system on road using natural thermal energy sources. Paper presented at the XIth PIARC Winter Road Congress, Sapporo, Japan, 28–31 Jan 2002

  21. Miyamoto S, Takeuchi M (2005) Snow-melting system on road using seasonal energy storage through foundation piles for bridge. In: Proceedings of JSCE (Japan Society of Civil Engineers) 797:51–62 (in Japanese)

  22. Nagai N, Miyamoto S, Nishiwaki M, Takeuchi M (2009) Numerical simulation of snow melting on pavement surface with heat dissipation pipe embedded. Heat Transf Asian Res 38(5):313–329

    Article  Google Scholar 

  23. Pahud D (2007) Serso, stockage saisonnier solaire pour le dégivrage d’un pont. Rapport final, Office fédéral de l’énergie, Berne (CH)

  24. Pahud D (2008) BRIDGESIM: outil de simulation pour le dégivrage de pont par énergie solaire (BRIDGESIM: a simulation tool for bridge de-icing with solar energy). Paper presented at the 15. Schweizerisches Status-Seminar “Energie- un Umweltforschung im Bauwesen”, Zürich, CH (in French)

  25. Parriaux A, Nicoud G (1993) De la montagne à la mer, les formations glaciaires et l’eau souterraine. Exemple du contexte Nord-alpin occidental. Quaternaire 4(2–3):61–67 (in French)

    Article  Google Scholar 

  26. Perrier N, Langevin A, Campbell JF (2006) A survey of models and algorithms for winter road maintenance. Part I: system design for spreading and plowing. Comput Oper Res 33(1):209–238

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was funded by the Swiss Federal Office for Roads and the Association of Road Professionals (VSS) through Project VSS 2010/503. The authors also thank the University of Liège, whose Lagamine software was used in the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyesse Laloui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupray, F., Li, C. & Laloui, L. Heat-exchanger piles for the de-icing of bridges. Acta Geotech. 9, 413–423 (2014). https://doi.org/10.1007/s11440-014-0307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0307-2

Keywords

Navigation