Acta Geotechnica

, Volume 10, Issue 2, pp 263–273 | Cite as

Multi-dimensional consolidation of layered poroelastic materials with anisotropic permeability and compressible fluid and solid constituents

  • Zhi Yong AiEmail author
  • Ya Dong Hu
Research Paper


The Biot’s consolidation theory of fluid-infiltrated porous materials is used to formulate the problem of 2D and 3D consolidation of multilayered poroelastic materials with anisotropic permeability and compressible fluid and solid constituents under external force. The Laplace–Fourier transforms technology is adopted to reduce the partial differential equations to ordinary ones in the transformed domain, and an extra Laplace transform is subsequently implemented with respect to the remained variable of depth z to solve the equations. Analytical matrices are then built between the displacements, pore pressure and the stresses, fluid flux for all of the layers. By considering the boundary conditions and continuity between adjacent layers, global stiffness matrix is finally assembled from the analytical matrices in transformed domain. Using the inversion technology of the Laplace–Fourier transforms, actual solutions in the physical domain can be obtained. Finally, a FORTRAN program is made to perform the theory, and a series of numerical examples are carried out to validate and be in-depth insight into 2D and 3D consolidation of multilayered poroelastic materials with anisotropic permeability and compressible fluid and solid constituents. The results exhibit that the characteristic of compressibility of the constituents may have a strong effect on the consolidation process.


Anisotropic permeability Compressible fluid and solid constituents Layered poroelastic materials Multi-dimensional consolidation 


  1. 1.
    Ai ZY, Wang QS (2008) A new analytical solution to axisymmetric Biot’s consolidation of a finite soil layer. Appl Math Mech 29(12):1617–1624CrossRefzbMATHGoogle Scholar
  2. 2.
    Ai ZY, Wu C (2009) Plane strain consolidation of soil layer with anisotropic permeability. Appl Math Mech 30(11):1437–1444CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ai ZY, Wang QS, Wu C (2008) A new method for solving Biot’s consolidation of a finite soil layer in the cylindrical coordinate system. Acta Mech Sin 24:691–697CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ai ZY, Cheng ZY, Han J (2008) State space solution to three-dimensional consolidation of multilayered soils. Int J Eng Sci 46:486–498CrossRefGoogle Scholar
  5. 5.
    Ai ZY, Wu C, Han J (2008) Transfer matrix solutions for three-dimensional consolidation of multi-layered soil with compressible constituents. Int J Eng Sci 46:678–685MathSciNetGoogle Scholar
  6. 6.
    Ai ZY, Wang QS, Han J (2009) Transfer matrix solutions to axisymmetric and non-axisymmetric consolidation of multilayered soils. Acta Mech 211:155–172CrossRefGoogle Scholar
  7. 7.
    Ai ZY, Cheng YC, Zeng WZ (2011) Analytical layer-element solution to axisymmetric consolidation of multilayered soils. Comput Geotech 38(2):227–232CrossRefGoogle Scholar
  8. 8.
    Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefzbMATHGoogle Scholar
  9. 9.
    Booker JR (1974) Consolidation of a finite layer subject to surface loading. Int J Solids Struct 10:1053–1065CrossRefGoogle Scholar
  10. 10.
    Booker JR, Carter JP (1987) Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability. Int J Solids Struct 23(3):369–385CrossRefzbMATHGoogle Scholar
  11. 11.
    Booker JR, Small JC (1982) Finite layer analysis of consolidation I. Int J Numer Anal Meth Geomech 6(2):151–171CrossRefzbMATHGoogle Scholar
  12. 12.
    Booker JR, Small JC (1982) Finite layer analysis of consolidation II. Int J Numer Anal Meth Geomech 6(2):173–194CrossRefzbMATHGoogle Scholar
  13. 13.
    Booker JR, Small JC (1987) A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace transforms. Int J Numer Anal Meth Geomech 11:363–380CrossRefzbMATHGoogle Scholar
  14. 14.
    Chau KT (1996) Fluid point source and point forces in linear elastic diffusive half-space. Mech Mater 23:241–253CrossRefGoogle Scholar
  15. 15.
    Chen GJ (2004) Consolidation of multilayered half space with anisotropic permeability and compressible constituents. Int J Solids Struct 41(16–17):4567–4586CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen GJ (2005) Steady-state solutions of multi-layered and cross-anisotropic half-space due to a point sink. Int J Geomech 5(1):45–57CrossRefGoogle Scholar
  17. 17.
    Cheng AH-D, Liggett JA (1984) Boundary integral equation method for linear porous-elasticity with applications to soil consolidation. Int J Numer Method Eng 20(2):255–278CrossRefzbMATHGoogle Scholar
  18. 18.
    Ganbe T, Kurashige M (2001) Integral equations for a 3D crack in a fluid saturated poroelastic infinite space of transversely isotropic permeability. JSME Int J, Ser A 44:423–430CrossRefGoogle Scholar
  19. 19.
    Gibson RE, Schiffman RL, Pu SL (1970) Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. Q J Mech Appl Math 23(4):505–520CrossRefzbMATHGoogle Scholar
  20. 20.
    McNamee J, Gibson RE (1960) Displacement functions and linear transforms applied to diffusion through porous elastic media. Q J Mech Appl Math 13(1):98–111CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McNamee J, Gibson RE (1960) Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratrum. Q J Mech Appl Math 13(2):210–227CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Pan E (1999) Green’s functions in layered poroelastic half-space. Int J Numer Anal Meth Geomech 23(13):1631–1653CrossRefzbMATHGoogle Scholar
  23. 23.
    Rajapakse RKND, Senjuntichai T (1993) Fundamental solutions for a poroelastic half-sapce with compressible constituents. J Appl Mech 60(4):844–856CrossRefGoogle Scholar
  24. 24.
    Schiffman RA, Fungaroli AA (1965) Consolidation due to tangential loads. Soil Mech Fdn Eng Conf Proc 1:188–192Google Scholar
  25. 25.
    Senjuntichai T, Rajapakse RKND (1995) Exact stiffness method for quasi-statics of a multilayered poroelastic medium. Int J Solids Struct 32(11):1535–1553CrossRefzbMATHGoogle Scholar
  26. 26.
    Singh JS, Rani S, Kumar R (2006) Plane strain deformation of a multi-layered poroelastic half-space by surface loads. Geophys J Int 170(3):685–694Google Scholar
  27. 27.
    Singh JS, Kumar R, Rani S (2009) Consolidation of a poroelastic half-space with anisotropic permeability and compressible constituents by axisymmetric surface loading. J Earth Syst Sci 118(5):563–574CrossRefGoogle Scholar
  28. 28.
    Sneddon IN (1972) The use of integral transform. McGraw-Hill, New YorkGoogle Scholar
  29. 29.
    Talbot A (1979) The accurate numerical inversion of Laplace transforms. J Inst Math Appl 23:97–120CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Terzaghi K (1923) Die berechnung der durchladdikesitsziffer des tones aus dem verlauf der haydrodynamischen spannungserscheinungen. Sitznugshr Akad Wiss Wien Math Naturewiss KI 135:15–138Google Scholar
  31. 31.
    Vardoulakis I, Harnpattanapanich T (1986) Numerical Laplace–Fourier transform inversion technique for layered-soil consolidation problems: I. Fundamental solutions and validation. Int J Numer Anal Meth Geomech 10(4):347–365CrossRefzbMATHGoogle Scholar
  32. 32.
    Wang JG, Fang SS (2001) The state vector solution of axisymmetric Biot’s consolidation problems for multilayered media. Mech Res Commun 28(6):671–677CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang JG, Fang SS (2003) State space solution of non-axisymmetric Biot consolidation problems for multilayered poroelastic media. Int J Eng Sci 41(15):1799–1813CrossRefzbMATHGoogle Scholar
  34. 34.
    Yue ZQ, Selvadurai APS, Law KT (1994) Excess pore water pressure in a porelastic seabed saturated with a compressible fluid. Can Geotech J 31:989–1003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical EngineeringTongji UniversityShanghaiChina

Personalised recommendations