Acta Geotechnica

, Volume 10, Issue 2, pp 255–262 | Cite as

Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach

  • Haijian Xie
  • Hywel Rhys Thomas
  • Yunmin Chen
  • Majid SedighiEmail author
  • Tony Liangtong Zhan
  • Xiaowu Tang
Research Paper


This paper presents an analytical solution for modeling the one-dimensional diffusion of organic contaminants through a composite liner, comprising a geomembrane, a geosynthetic clay liner and a soil liner system. The Laplace transformation technique is used to obtain a dimensionless analytical solution to the diffusion of organic chemicals through the triple-layer composite liners. The solution presented is verified against two alternative numerical solutions. The analytical solution is then adopted to provide a series of graphical design charts which can assist with the assessment and design of composite liners. Design examples are included for a composite liner having a geomembrane, a geosynthetic clay liner and a soil liner system. The proposed analytical solution provides a practical and relatively simple tool to assist with the design of composite liners and the validation of numerical models.


Analytical techniques Diffusion Geomembranes Geosynthetics Landfill Liners Organic contaminants 



The financial supports of the authors based at Zhejiang University from the Natural Science Foundation of China (Grants 51278452, 51008274, 50538080 and 51010008), the National Basic Research Program of China (973 program) (Grant 2012CB719806), National Science Fund for Distinguished Young Scholars (Grant 50425825), Zhejiang Provincial public industry research special funds (Grant 2011C21061) and the Zhejiang Provincial Natural Science Foundation of China (Grant Y5100402) are gratefully acknowledged.


  1. 1.
    Barlaz MA, Rooker AP, Kjeldsen P, Gabr MA, Borden RC (2002) Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ Sci Technol 36(16):3457–3464CrossRefGoogle Scholar
  2. 2.
    Barroso M, Touze-Foltz N, von Maubeuge K, Pierson P (2006) Laboratory investigation of flow rate through composite liner consisting of a geomembrane, a GCL and a soil liner. Geotext Geomembranes 24(3):139–155CrossRefGoogle Scholar
  3. 3.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Chao K, Wang P, Lin C (2006) Estimation of diffusion coefficients and solubilities for organic solvents permeation through high-density polyethylene geomembrane. J Environ Eng ASCE 132(5):519–526CrossRefGoogle Scholar
  5. 5.
    Chao K, Wang P, Wang Y (2007) Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane. J Hazard Mater 142(1–2):227–235CrossRefGoogle Scholar
  6. 6.
    Chen YM, Xie HJ, Ke H, Chen RP (2009) An analytical solution of contaminant diffusion through multi-layered media and its applications. Environ Geol 58(5):1083–1094CrossRefGoogle Scholar
  7. 7.
    Chinese Ministry of Construction (CNMC) (2007) Technical code for liner system of municipal solid waste landfill CJJ 113–2007. China Architecture and Building Press, BeijingGoogle Scholar
  8. 8.
    Chinese Ministry of Health (CNMH) (2006) Standards for Drinking Water Quality GB 5749–2006. China Standards Press, BeijingGoogle Scholar
  9. 9.
    Du YJ, Shen SL, Liu SY, Hayashi S (2009) Contaminant mitigation performance of Chinese standard municipal solid waste landfill liner system. Geotext Geomembranes 27(3):232–239CrossRefGoogle Scholar
  10. 10.
    Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manage 23(7):561–571CrossRefGoogle Scholar
  11. 11.
    El-Zein A, Rowe RK (2008) Impact on groundwater of concurrent leakage and diffusion of dichloromethane through geomembranes in landfill liners. Geosynth Int 15(1):55–71CrossRefGoogle Scholar
  12. 12.
    Fernandez LA, Harvey CF, Gschwend PM (2009) Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ Sci Technol 43(23):8888–8894CrossRefGoogle Scholar
  13. 13.
    Foose GJ (2002) Transit-time design for diffusion through composite liners. J Geotech Geoenviron Eng ASCE 128(7):590–601CrossRefGoogle Scholar
  14. 14.
    Foose GJ (2010) A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Manage 30(8–9):1577–1586CrossRefGoogle Scholar
  15. 15.
    Giroud JP, Badu-Tweneboah K, Soderman KL (1997) Comparison of leakage flow through compacted clay liners and geosynthetic clay liners in landfill liner systems. Geosynth Int 4(3–4):391–431CrossRefGoogle Scholar
  16. 16.
    Hendry MJ, Barbour SL, Boldt-Leppin BEJ, Reifferscheid LJ, Wassenaar LI (2009) A comparison of laboratory and field based determinations of molecular diffusion coefficients in a low permeability geologic medium. Environ Sci Technol 43(17):6730–6736CrossRefGoogle Scholar
  17. 17.
    Hinestroza J, De Kee D (2004) Permeation of organics through linear low density polyethylene geomembranes under mechanical deformation. J Environ Eng ASCE 130(12):1468–1474CrossRefGoogle Scholar
  18. 18.
    Islam MZ, Rowe RK (2009) Permeation of BTEX through unaged and aged HDPE Geomembranes. J Geotech Geoenviron Eng ASCE 135(8):1130–1140CrossRefGoogle Scholar
  19. 19.
    Joo JC, Kim JY, Nam K (2005) Estimation of mass transport parameters of organic compounds through high density polyethylene geomembranes using a modified double-compartment apparatus. J Environ Eng ASCE 131(5):790–799CrossRefGoogle Scholar
  20. 20.
    Kalbe U, Müller WW, Berger W, Eckardt J (2002) Transport of organic contaminants within composite liner systems. Appl Clay Sci 21(1–2):67–76CrossRefGoogle Scholar
  21. 21.
    Katsumi T, Benson CH, Foose GJ, Kamon M (2001) Performance-based design of landfill liners. Eng Geol 60(1–4):139–148CrossRefGoogle Scholar
  22. 22.
    Lake CB, Rowe RK (2000) Diffusion of sodium and chloride through geosynthetic clay liner. Geotext Geomembranes 18(2–4):103–131CrossRefGoogle Scholar
  23. 23.
    Lake CB, Rowe RK (2004) Volatile organic compound diffusion and sorption coefficients for a needle-punched GCL. Geosyn Int 11(4):257–272CrossRefGoogle Scholar
  24. 24.
    Lake CB, Rowe RK (2005) A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. Geotext Geomembranes 23(4):323–347CrossRefGoogle Scholar
  25. 25.
    Li YC, Cleall PJ (2010) Analytical solutions for contaminant diffusion in double-layered porous media. J Geotech Geoenviron Eng ASCE 136(11):1542–1554CrossRefGoogle Scholar
  26. 26.
    Liu CX, Ball WP (1998) Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Adv Water Resour 21(4):297–313CrossRefGoogle Scholar
  27. 27.
    Liu G, Barbour L, Si BC (2009) Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ Sci Technol 43(7):2412–2416CrossRefGoogle Scholar
  28. 28.
    McWatters RS, Rowe RK (2009) Transport of volatile organic compounds through PVC and LLDPE geomembranes from both aqueous and vapour phases. Geosyn Int 16(6):468–481CrossRefGoogle Scholar
  29. 29.
    McWatters RS, Rowe RK (2010) Diffusive transport of VOCs through LLDPE and two coextruded geomembranes. J Geotech Geoenviron Eng ASCE 136(9):1167–1177CrossRefGoogle Scholar
  30. 30.
    Nefso EK, Burns SE (2007) Comparison of the equilibrium sorption of five organic compounds to HDPE, PP and PVC geomembranes. Geotext Geomembranes 25(6):360–365CrossRefGoogle Scholar
  31. 31.
    Öman CB, Junestedt C (2008) Chemical characterization of landfill leachates-400 parameters and compounds. Waste Manage 28(10):1876–1891CrossRefGoogle Scholar
  32. 32.
    Park EY, Zhan HB (2001) Analytical solutions of contaminant transport from finite one-, two-, and three dimensional sources in a finite-thickness aquifer. J Contam Hydrol 53(1–2):41–61CrossRefGoogle Scholar
  33. 33.
    Park JK, Sakti JP, Hoopes JA (1996) Transport of organic compounds in thermoplastic geomembranes I: mathematical model. J Environ Eng ASCE 122(9):800–806CrossRefGoogle Scholar
  34. 34.
    Park JK, Sakti JP, Hoopes JA (1996) Transport of aqueous compounds in thermoplastic geomembranes II: mass flux estimates and practical implications. J Environ Eng ASCE 122(9):807–813CrossRefGoogle Scholar
  35. 35.
    Park M, Benson CH, Edil TB (2012) Comparison of batch and double compartment test for measuring volatile organic compound transport parameters in geomembranes. Geotext Geomembranes 31:15–30CrossRefGoogle Scholar
  36. 36.
    Rowe RK, Booker JR (1994) Pollute V6.3 User’s Guide. GAEA Technologies Ltd. 87 Garden Street, Whitby, Ontario, Canada L1 N 9E7Google Scholar
  37. 37.
    Rowe RK, Brachman RWI (2004) Assessment of equivalence of composite liners. Geosynth Int 11(4):273–286CrossRefGoogle Scholar
  38. 38.
    Rowe RK, Quigley RM, Brachman RWI, Booker JR (2004) Barrier systems for waste disposal facilities, 2nd edn. Spon Press, London and New YorkGoogle Scholar
  39. 39.
    Rowe RK (2005) Long-term performance of contaminant barrier systems. Géotechnique 55(9):631–678CrossRefGoogle Scholar
  40. 40.
    Rowe RK, Mukunoki T, Sangam HP (2005) BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. J Geotech Geoenviron ASCE 131(10):1211–1221CrossRefGoogle Scholar
  41. 41.
    Savoye S, Page J, Puente C, Imbert C, Coelho D (2010) New experimental approach for studying diffusion through an intact and unsaturated medium: a case study with Callovo-Oxfordian argillite. Environ Sci Technol 44(10):3698–3704CrossRefGoogle Scholar
  42. 42.
    Seetharam SC, Thomas HR, Cleall PJ (2007) Coupled thermo/hydro/chemical/mechanical model for unsaturated soils-Numerical algorithm. Int J Num Meth Eng 70(12):1480–1511CrossRefzbMATHGoogle Scholar
  43. 43.
    Surdo EM, Cussler EL, Arnold WA (2009) Sorptive and reactive scavenger-containing sandwich membranes as contaminant barriers. J Environ Eng ASCE 135(2):69–76CrossRefGoogle Scholar
  44. 44.
    Thomas HR, Sedighi M, Vardon PJ (2012) Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions. Geotech Geol Eng 30(4):841–857CrossRefGoogle Scholar
  45. 45.
    Vilomet JD, Angeletti B, Moustier S, Ambrosi JP, Wiesner M, Bottero JY, Chatelet-Snidaro L (2001) Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ Sci Technol 35(23):4675–4679CrossRefGoogle Scholar
  46. 46.
    Wolfram S (2003) The Mathematica book, 5th edn. Wolfram Media Inc., USAGoogle Scholar
  47. 47.
    Xiao S, Moresoli C, Burczyk A, Pintauro P, De Kee D (1999) Transport of organic contaminants in geomembranes under stress. J Environ Eng ASCE 125(7):647–652CrossRefGoogle Scholar
  48. 48.
    Xie HJ, Chen YM, Lou ZH (2010) An analytical solution to contaminant transport through composite liners with geomembrane defects. Sci China Tech Sci 53(5):1424–1433CrossRefzbMATHGoogle Scholar
  49. 49.
    Yong RN, Mulligan K (2003) Natural attenuation of contaminants in soils. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haijian Xie
    • 1
  • Hywel Rhys Thomas
    • 2
  • Yunmin Chen
    • 1
  • Majid Sedighi
    • 2
    Email author
  • Tony Liangtong Zhan
    • 1
  • Xiaowu Tang
    • 1
  1. 1.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  2. 2.Geoenvironmental Research Centre, School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations