Skip to main content
Log in

Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents an analytical solution for modeling the one-dimensional diffusion of organic contaminants through a composite liner, comprising a geomembrane, a geosynthetic clay liner and a soil liner system. The Laplace transformation technique is used to obtain a dimensionless analytical solution to the diffusion of organic chemicals through the triple-layer composite liners. The solution presented is verified against two alternative numerical solutions. The analytical solution is then adopted to provide a series of graphical design charts which can assist with the assessment and design of composite liners. Design examples are included for a composite liner having a geomembrane, a geosynthetic clay liner and a soil liner system. The proposed analytical solution provides a practical and relatively simple tool to assist with the design of composite liners and the validation of numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barlaz MA, Rooker AP, Kjeldsen P, Gabr MA, Borden RC (2002) Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ Sci Technol 36(16):3457–3464

    Article  Google Scholar 

  2. Barroso M, Touze-Foltz N, von Maubeuge K, Pierson P (2006) Laboratory investigation of flow rate through composite liner consisting of a geomembrane, a GCL and a soil liner. Geotext Geomembranes 24(3):139–155

    Article  Google Scholar 

  3. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford

    Google Scholar 

  4. Chao K, Wang P, Lin C (2006) Estimation of diffusion coefficients and solubilities for organic solvents permeation through high-density polyethylene geomembrane. J Environ Eng ASCE 132(5):519–526

    Article  Google Scholar 

  5. Chao K, Wang P, Wang Y (2007) Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane. J Hazard Mater 142(1–2):227–235

    Article  Google Scholar 

  6. Chen YM, Xie HJ, Ke H, Chen RP (2009) An analytical solution of contaminant diffusion through multi-layered media and its applications. Environ Geol 58(5):1083–1094

    Article  Google Scholar 

  7. Chinese Ministry of Construction (CNMC) (2007) Technical code for liner system of municipal solid waste landfill CJJ 113–2007. China Architecture and Building Press, Beijing

    Google Scholar 

  8. Chinese Ministry of Health (CNMH) (2006) Standards for Drinking Water Quality GB 5749–2006. China Standards Press, Beijing

    Google Scholar 

  9. Du YJ, Shen SL, Liu SY, Hayashi S (2009) Contaminant mitigation performance of Chinese standard municipal solid waste landfill liner system. Geotext Geomembranes 27(3):232–239

    Article  Google Scholar 

  10. Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manage 23(7):561–571

    Article  Google Scholar 

  11. El-Zein A, Rowe RK (2008) Impact on groundwater of concurrent leakage and diffusion of dichloromethane through geomembranes in landfill liners. Geosynth Int 15(1):55–71

    Article  Google Scholar 

  12. Fernandez LA, Harvey CF, Gschwend PM (2009) Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ Sci Technol 43(23):8888–8894

    Article  Google Scholar 

  13. Foose GJ (2002) Transit-time design for diffusion through composite liners. J Geotech Geoenviron Eng ASCE 128(7):590–601

    Article  Google Scholar 

  14. Foose GJ (2010) A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Manage 30(8–9):1577–1586

    Article  Google Scholar 

  15. Giroud JP, Badu-Tweneboah K, Soderman KL (1997) Comparison of leakage flow through compacted clay liners and geosynthetic clay liners in landfill liner systems. Geosynth Int 4(3–4):391–431

    Article  Google Scholar 

  16. Hendry MJ, Barbour SL, Boldt-Leppin BEJ, Reifferscheid LJ, Wassenaar LI (2009) A comparison of laboratory and field based determinations of molecular diffusion coefficients in a low permeability geologic medium. Environ Sci Technol 43(17):6730–6736

    Article  Google Scholar 

  17. Hinestroza J, De Kee D (2004) Permeation of organics through linear low density polyethylene geomembranes under mechanical deformation. J Environ Eng ASCE 130(12):1468–1474

    Article  Google Scholar 

  18. Islam MZ, Rowe RK (2009) Permeation of BTEX through unaged and aged HDPE Geomembranes. J Geotech Geoenviron Eng ASCE 135(8):1130–1140

    Article  Google Scholar 

  19. Joo JC, Kim JY, Nam K (2005) Estimation of mass transport parameters of organic compounds through high density polyethylene geomembranes using a modified double-compartment apparatus. J Environ Eng ASCE 131(5):790–799

    Article  Google Scholar 

  20. Kalbe U, Müller WW, Berger W, Eckardt J (2002) Transport of organic contaminants within composite liner systems. Appl Clay Sci 21(1–2):67–76

    Article  Google Scholar 

  21. Katsumi T, Benson CH, Foose GJ, Kamon M (2001) Performance-based design of landfill liners. Eng Geol 60(1–4):139–148

    Article  Google Scholar 

  22. Lake CB, Rowe RK (2000) Diffusion of sodium and chloride through geosynthetic clay liner. Geotext Geomembranes 18(2–4):103–131

    Article  Google Scholar 

  23. Lake CB, Rowe RK (2004) Volatile organic compound diffusion and sorption coefficients for a needle-punched GCL. Geosyn Int 11(4):257–272

    Article  Google Scholar 

  24. Lake CB, Rowe RK (2005) A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. Geotext Geomembranes 23(4):323–347

    Article  Google Scholar 

  25. Li YC, Cleall PJ (2010) Analytical solutions for contaminant diffusion in double-layered porous media. J Geotech Geoenviron Eng ASCE 136(11):1542–1554

    Article  Google Scholar 

  26. Liu CX, Ball WP (1998) Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Adv Water Resour 21(4):297–313

    Article  Google Scholar 

  27. Liu G, Barbour L, Si BC (2009) Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ Sci Technol 43(7):2412–2416

    Article  Google Scholar 

  28. McWatters RS, Rowe RK (2009) Transport of volatile organic compounds through PVC and LLDPE geomembranes from both aqueous and vapour phases. Geosyn Int 16(6):468–481

    Article  Google Scholar 

  29. McWatters RS, Rowe RK (2010) Diffusive transport of VOCs through LLDPE and two coextruded geomembranes. J Geotech Geoenviron Eng ASCE 136(9):1167–1177

    Article  Google Scholar 

  30. Nefso EK, Burns SE (2007) Comparison of the equilibrium sorption of five organic compounds to HDPE, PP and PVC geomembranes. Geotext Geomembranes 25(6):360–365

    Article  Google Scholar 

  31. Öman CB, Junestedt C (2008) Chemical characterization of landfill leachates-400 parameters and compounds. Waste Manage 28(10):1876–1891

    Article  Google Scholar 

  32. Park EY, Zhan HB (2001) Analytical solutions of contaminant transport from finite one-, two-, and three dimensional sources in a finite-thickness aquifer. J Contam Hydrol 53(1–2):41–61

    Article  Google Scholar 

  33. Park JK, Sakti JP, Hoopes JA (1996) Transport of organic compounds in thermoplastic geomembranes I: mathematical model. J Environ Eng ASCE 122(9):800–806

    Article  Google Scholar 

  34. Park JK, Sakti JP, Hoopes JA (1996) Transport of aqueous compounds in thermoplastic geomembranes II: mass flux estimates and practical implications. J Environ Eng ASCE 122(9):807–813

    Article  Google Scholar 

  35. Park M, Benson CH, Edil TB (2012) Comparison of batch and double compartment test for measuring volatile organic compound transport parameters in geomembranes. Geotext Geomembranes 31:15–30

    Article  Google Scholar 

  36. Rowe RK, Booker JR (1994) Pollute V6.3 User’s Guide. GAEA Technologies Ltd. 87 Garden Street, Whitby, Ontario, Canada L1 N 9E7

  37. Rowe RK, Brachman RWI (2004) Assessment of equivalence of composite liners. Geosynth Int 11(4):273–286

    Article  Google Scholar 

  38. Rowe RK, Quigley RM, Brachman RWI, Booker JR (2004) Barrier systems for waste disposal facilities, 2nd edn. Spon Press, London and New York

    Google Scholar 

  39. Rowe RK (2005) Long-term performance of contaminant barrier systems. Géotechnique 55(9):631–678

    Article  Google Scholar 

  40. Rowe RK, Mukunoki T, Sangam HP (2005) BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. J Geotech Geoenviron ASCE 131(10):1211–1221

    Article  Google Scholar 

  41. Savoye S, Page J, Puente C, Imbert C, Coelho D (2010) New experimental approach for studying diffusion through an intact and unsaturated medium: a case study with Callovo-Oxfordian argillite. Environ Sci Technol 44(10):3698–3704

    Article  Google Scholar 

  42. Seetharam SC, Thomas HR, Cleall PJ (2007) Coupled thermo/hydro/chemical/mechanical model for unsaturated soils-Numerical algorithm. Int J Num Meth Eng 70(12):1480–1511

    Article  MATH  Google Scholar 

  43. Surdo EM, Cussler EL, Arnold WA (2009) Sorptive and reactive scavenger-containing sandwich membranes as contaminant barriers. J Environ Eng ASCE 135(2):69–76

    Article  Google Scholar 

  44. Thomas HR, Sedighi M, Vardon PJ (2012) Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions. Geotech Geol Eng 30(4):841–857

    Article  Google Scholar 

  45. Vilomet JD, Angeletti B, Moustier S, Ambrosi JP, Wiesner M, Bottero JY, Chatelet-Snidaro L (2001) Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ Sci Technol 35(23):4675–4679

    Article  Google Scholar 

  46. Wolfram S (2003) The Mathematica book, 5th edn. Wolfram Media Inc., USA

    Google Scholar 

  47. Xiao S, Moresoli C, Burczyk A, Pintauro P, De Kee D (1999) Transport of organic contaminants in geomembranes under stress. J Environ Eng ASCE 125(7):647–652

    Article  Google Scholar 

  48. Xie HJ, Chen YM, Lou ZH (2010) An analytical solution to contaminant transport through composite liners with geomembrane defects. Sci China Tech Sci 53(5):1424–1433

    Article  MATH  Google Scholar 

  49. Yong RN, Mulligan K (2003) Natural attenuation of contaminants in soils. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

The financial supports of the authors based at Zhejiang University from the Natural Science Foundation of China (Grants 51278452, 51008274, 50538080 and 51010008), the National Basic Research Program of China (973 program) (Grant 2012CB719806), National Science Fund for Distinguished Young Scholars (Grant 50425825), Zhejiang Provincial public industry research special funds (Grant 2011C21061) and the Zhejiang Provincial Natural Science Foundation of China (Grant Y5100402) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sedighi.

Appendix

Appendix

The general solution to the governing Eqs. (1) and (2) can be written as:

$$ C_{\text{gm}} \left( z \right) = A_{1} z + A_{2} $$
(22)
$$ C_{\text{gcl}} \left( z \right) = A_{3} z + A_{4} $$
(23)

where A 1 to A 4 are the parameters to be determined by substituting the above equations into Eqs. (6) to (9) as follows:

$$ A_{1} = C_{0} S_{\text{gf}} $$
(24)
$$ A_{2} = - \frac{{D_{\text{gcl}} n_{\text{gcl}} [C_{0} S_{\text{gf}} - C_{\text{sl}} (L_{\text{gm}} + L_{\text{gcl}} ,t)S_{\text{gf}}^{'} ]}}{{D_{\text{gcl}} n_{\text{gcl}} L_{\text{gm}} + D_{\text{gm}} S_{\text{gf}}^{'} L_{\text{gcl}} }} $$
(25)
$$ A_{3} = - \frac{{C_{0} D_{\text{gm}} (L_{\text{gm}} + L_{\text{gcl}} ){\text{S}}_{\text{gf}}}} {{D_{\text{gcl}} n_{\text{gcl}} L_{\text{gm}} + D_{\text{gm}} S_{\text{gf}}^{'} L_{\text{gcl}} }} - \frac {{C_{\text{sl}} (L_{\text{gm}} + L_{\text{gcl}} ,t)L_{\text{gm}} (D_{\text{gcl}} n_{\text{gcl}} - D_{\text{gm}} S_{\text{gf}}^{'} )}} {{D_{\text{gcl}} n_{\text{gcl}} L_{\text{gm}} + D_{\text{gm}} S_{\text{gf}}^{'} L_{\text{gcl}} }} $$
(26)
$$ A_{4} = - \frac{{D_{\text{gm}} [C_{0} S_{\text{gf}} - C_{\text{sl}} (L_{\text{gm}} + L_{\text{gcl}} ,t)S_{\text{gf}}^{'} ]}}{{D_{\text{gcl}} n_{\text{gcl}} L_{\text{gm}} + D_{\text{gm}} S_{\text{gf}}^{'} L_{\text{gcl}} }} $$
(27)

Substituting Eqs. (22) to (27) into Eq. (10), the relationship between f sl and C sl can be obtained as follows:

$$ C_{\text{sl}} \left( {L_{\text{gm}} + L_{\text{gcl}} ,t} \right) = \eta_{1} + \eta_{2} f_{\text{sl}} \left( {L_{\text{gm}} + L_{\text{gcl}} ,t} \right) $$
(28)

where

$$ \eta_{1} = \frac{{C_{0} S_{\text{gf}} }}{{S_{\text{gf}}^{'} }} $$
(29)
$$ \eta_{2} = n_{\text{sl}} D_{\text{sl}} \left( {\frac{{L_{\text{gcl}} }}{{n_{\text{gcl}} D_{\text{gcl}} }} + \frac{{L_{\text{gm}} }}{{S_{\text{gf}}^{'} D_{\text{gm}} }}} \right) $$
(30)

The Eq. (28) is the upper boundary condition for the governing Eq. (3).

A Laplace transformation technique is used to obtain the solution to Eq. (3). A linear form of the governing Eq. (3) can be obtained with respect to time by introducing a Laplace transform, given as:

$$ \overline{{C_{\text{sl}} \left( {z ,p} \right)}} = \int\limits_{0}^{\infty } {{\text{e}}^{ - pt} } C_{\text{sl}} \left( {z ,t} \right){\text{d}}t $$
(31)

where \( \overline{{C_{\text{sl}} \left( {z ,p} \right)}} \) is the Laplace transform of \( C_{\text{sl}} \left( {z ,t} \right) \) and p is the Laplace parameter.

The governing equation for contaminant concentration in the soil liner can then become:

$$ p\overline{{C_{\text{sl}} \left( {z,p} \right)}} - C_{i} = \frac{{D^{ * } }}{{R_{\text{d}} }}\frac{{\partial^{2} \overline{{C_{\text{sl}} \left( {z,p} \right)}} }}{{\partial z^{2} }} $$
(32)

The Laplace transforms of the boundary conditions considered can be written as follows:

$$ \overline{{C_{\text{sl}} (L_{\text{gm}} + L_{\text{gm}} ,p)}} = \frac{{\eta_{1} }}{p} + \eta_{2} \frac{{\partial \overline{{C_{\text{sl}} (L_{\text{gm}} + L_{\text{gm}} ,p)}} }}{\partial z} $$
(33)
$$ \frac{{\partial \overline{{C_{\text{sl}} (\infty ,p)}} }}{\partial z} = 0 $$
(34)

The general solution to Eq. (32) can then be expressed as:

$$ \overline{{C_{\text{sl}} (z,p)}} = Ge^{\lambda z} + \frac{{C_{i} }}{p} $$
(35)

where G is to be determined from the boundary conditions. λ is the characteristic root which is determined by the following equation:

$$ \lambda = - \sqrt {\frac{{pR_{\text{d}} }}{D}} $$
(36)

Substituting Eqs. (35) and (36) into Eq. (33), the following expression can then be obtained:

$$ G = \frac{{(C_{i} - \eta_{1} )}}{{pe^{{(L_{\text{gm}} + L_{\text{gcl}} )\lambda }} \left( {\eta_{2} \lambda - 1} \right)}} $$
(37)

Using Eq. (37), the solution to Eq. (32) can be expressed as:

$$ \overline{{C_{\text{sl}} \left( {z,p} \right)}} = \frac{{C_{i} }}{p} + \frac{{(\eta_{1} - C_{i} )\exp [ - \sqrt {pR_{\text{d}} /D_{\text{sl}} } (z - L_{\text{gm}} - L_{\text{gcl}} )]}}{{{\text{p}}\eta_{2} (1/\eta_{2} + \sqrt {pR_{\text{d}} /D_{\text{sl}} } )}} $$
(38)

Following Carslaw and Jaeger [3], the inverse Laplace transform of \( \overline{{C_{\text{sl}} (z,p)}} \) can be obtained as given in Eqs. (13) to (17).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Thomas, H.R., Chen, Y. et al. Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach. Acta Geotech. 10, 255–262 (2015). https://doi.org/10.1007/s11440-013-0262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0262-3

Keywords

Navigation