Skip to main content
Log in

Extension to barodesy to model void ratio and stress dependency of the K 0 value

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Barodesy is a new framework for constitutive modelling of soils. The actual version uses a constant value of the coefficient of earth pressure at rest K 0, which contradicts experimental findings. A straightforward modification is presented here to remove this shortcoming. The calibration of the material parameters remains as simple as in the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Proportional strain paths are characterised by constant ratios of the principal values ɛ123, that is, constant ratios of the principal values of the stretching D 1:D 2:D 3.

References

  1. Bauer E (1992) Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe 130

  2. Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  3. Chu J, Gan C (2004) Effect of void ratio on K 0 of loose sand. Géotechnique 54(4):285–288

    Article  Google Scholar 

  4. Chu J, Lo SCR (1994) Asymptotic behaviour of a granular soil in strain path testing. Géotechnique 44(1):65–82

    Article  Google Scholar 

  5. Desrues J, Zweschper B, Vermeer P (2000) Database for tests on Hostun RF sand. Institutsbericht 13. Institut für Geotechnik, Universität Stuttgart

  6. Fellin W, Ostermann A (2011) The critical state behaviour of barodesy compared with the Matsuoka–Nakai failure criterion. Int J Numer Anal Methods Geomech. doi:10.1002/nag.1111

  7. Goldscheider M (1976) Grenzbedingung und Fließregel von Sand. Mech Res Commun 3:463–468

    Article  Google Scholar 

  8. Gudehus G, Goldscheider M, Winter H (1977) Mechanical properties of sand and clay and numerical integration methods: some sources of errors and bounds of accuracy. In: Gudehus G (ed) Finite elements in geomechanics. Wiley, New York, pp 121–150

  9. Guo P (2010) Effect of density and compressibility on K 0 of cohesionless soils. Acta Geotech 5(4):225–238

    Article  MATH  Google Scholar 

  10. Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik, vol 142. Universität Fridericiana in Karlsruhe

  11. Kolymbas D (1985) A generalized hypoelastic constitutive law. In: Proceedings of the XI international conference on soil mechanics and foundation engineering, San Francisco, Balkema, Rotterdam vol 5, p 2626

  12. Kolymbas D (2009) Sand as an archetypical natural solid. In: Kolymbas D, Viggiani G (eds) Mechanics of natural solids, Springer, Berlin, Heidelberg, pp 1–26

  13. Kolymbas D (2012a) Barodesy: a new constitutive frame for soils. Géotech Lett 2:17–23

    Article  Google Scholar 

  14. Kolymbas D (2012b) Barodesy: a new hypoplastic approach. Int J Numer Anal Methods Geomech 36(9):1220–1240. doi:10.1002/nag.1051

    Article  Google Scholar 

  15. Kolymbas D (2012c) Barodesy as a novel hypoplastic constitutive theory based on the asymptotic behaviour of sand. Geotechnik 35(3):187–197

    Google Scholar 

  16. Kolymbas D, Bauer E (1993) Soft oedometer—a new testing device and its application for the calibration of hypoplastic constitutive laws. Geotech Test J 16(2):263–270

    Article  Google Scholar 

  17. Lirer S, Flora A, Nicotera MV (2011) Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel. Acta Geotech 6(1):1–12

    Article  Google Scholar 

  18. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. In: Proceedings of JSCE 1974, vol 232, pp 59–74

  19. Talesnick M (2012) A different approach and result to the measurement of K 0 of granular soils. Géotechnique 62(11):1041–1045. doi:10.1680/geot.11.P.009

  20. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91. http://ci.nii.ac.jp/naid/110003946012

    Google Scholar 

  21. von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive Frict Mater 1:251–271

    Article  Google Scholar 

  22. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive model with critical state for granular materials. Mech Mater 23(1):45–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Fellin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellin, W. Extension to barodesy to model void ratio and stress dependency of the K 0 value. Acta Geotech. 8, 561–565 (2013). https://doi.org/10.1007/s11440-013-0238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0238-3

Keywords

Navigation