Acta Geotechnica

, Volume 9, Issue 1, pp 67–79 | Cite as

OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany

  • Dedong Li
  • Sebastian Bauer
  • Katharina Benisch
  • Bastian Graupner
  • Christof Beyer
Research Paper

Abstract

Sequestration of CO2 into a deep geological reservoir causes a complex interaction of different processes such as multiphase flow, phase transition, multicomponent transport, and geochemical reactions between dissolved CO2 and the mineral matrix of the porous medium. A prognosis of the reservoir behaviour and the feedback from large-scale geochemical alterations require efficient process-based numerical models. For this purpose, the multiphase flow and multicomponent transport code OpenGeoSys-Eclipse have been coupled to the geochemical model ChemApp. The newly developed coupled simulator was successfully verified for correctness and accuracy of the implemented reaction module by benchmarking tests. The code was then applied to assess the impact of geochemical reactions during CO2 sequestration at a hypothetical but typical Bunter sandstone formation in the Northern German Basin. Injection and spreading of 1.48 × 107 t of CO2 in an anticline structure of the reservoir were simulated over a period of 20 years of injection plus 80 years of post-injection time. Equilibrium geochemical calculations performed by ChemApp show only a low reactivity to the geochemical system. The increased acidity of the aqueous solution results in dissolution of small amounts of calcite, anhydrite, and quartz. Geochemical alterations of the mineral phase composition result in slight increases in porosity and permeability, which locally may reach up to +0.02 and 0.1 %, respectively.

Keywords

CO2 storage ChemApp Multiphase flow Numerical modelling Reactive transport OpenGeoSys 

References

  1. 1.
    Appelo CAJ, Postma D (2005) Geochemistry, Groundwater and Pollution, 2nd edition. Balkema PublisherGoogle Scholar
  2. 2.
    Aradottir ESP, Sonnenthal EL, Jonsson H (2012) Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks. Chem Geol 304:26–38. doi:10.1016/j.chemgeo.2012.01.031 CrossRefGoogle Scholar
  3. 3.
    Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, Melancon J, Pelton AD, Petersen S (2002) FactSage thermochemical software and databases. Calphad-Comput Coupl Phase Diagr Thermoche 26(2):189–228. doi:10.1016/s0364-5916(02)00035-4 CrossRefGoogle Scholar
  4. 4.
    Bale CW, Belisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melancon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases—recent developments. Calphad-Comput Coupling Phase Diagr Thermochem 33(2):295–311. doi:10.1016/j.calphad.2008.09.009 CrossRefGoogle Scholar
  5. 5.
    Bauer S, Class H, Ebert M, Feeser V, Goetze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schaefer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67(2):351–367. doi:10.1007/s12665-012-1707-y CrossRefGoogle Scholar
  6. 6.
    Benisch K, Bauer S (2012) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. In: Oswald SE, Kolditz O, Attinger S (Eds.) Models—Repositories of Knowledge. Proceedings ModelCARE2011 held at Leipzig, IAHS Publ, Germany, Sept 2011, vol 355, pp 245–251Google Scholar
  7. 7.
    Benisch K, Bauer S (in revision) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. International Journal of Greenhouse Gas ControlGoogle Scholar
  8. 8.
    Bennion B, Bachu S (2006) Dependence on temperature, pressure, and palinity of the IFT and relative permeability displacement characteristics of CO2 injected in deep saline aquifers. Paper SPE 102138, presented at the 2006 SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, September 24-27Google Scholar
  9. 9.
    Beyer C, Konrad W, Ruegner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag (Oxf) 29(2):839–850. doi:10.1016/j.wasman.2008.06.025 CrossRefGoogle Scholar
  10. 10.
    Beyer C, Li D, De Lucia M, Kuehn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67(2):573–588. doi:10.1007/s12665-012-1684-1 CrossRefGoogle Scholar
  11. 11.
    De Lucia M, Bauer S, Beyer C, Kuehn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67(2):563–572. doi:10.1007/s12665-012-1725-9 CrossRefGoogle Scholar
  12. 12.
    Dethlefsen F, Ebert M, Dahmke A (in revision) A Geological Database as a Planning Tool for Underground Land Use. Environmental Earth SciencesGoogle Scholar
  13. 13.
    Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117. doi:10.1007/s12665-011-1360-x CrossRefGoogle Scholar
  14. 14.
    Duan Z, Hu J, Li D, Mao S (2008) Densities of the CO2-H2O and CO2-H2O-NaCl systems up to 647 K and 100 MPa. Energy Fuels 22(3):1666–1674. doi:10.1021/ef700666b CrossRefGoogle Scholar
  15. 15.
    Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in groundwater-flow systems—a case of nitrate removal by oxidation of pyrite. Water Resour Res 28(10):2829–2843. doi:10.1029/92wr01264 CrossRefGoogle Scholar
  16. 16.
    Eriksson G, Konigsberger E (2008) FactSage and ChemApp Two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl Chem 80(6):1293–1302. doi:10.1351/pac200880061293 CrossRefGoogle Scholar
  17. 17.
    Fredd CN, Fogler HS (1998) Influence of transport and reaction on wormhole formation in porous media. AIChE J 44(9):1933–1949. doi:10.1002/aic.690440902 CrossRefGoogle Scholar
  18. 18.
    Graupner BJ, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800. doi:10.1016/j.egypro.2011.02.314 CrossRefGoogle Scholar
  19. 19.
    Graupner BJ, Li D, Benisch K, Mitiku AB, Beyer C, Bauer S (2012) The coupled multiphase flow and reactive transport simulator OGS-ECLIPSE CO2 storage simulations. In: Oswald SE, Kolditz O, Attinger S (Eds.) Models—Repositories of Knowledge. Proceedings ModelCARE2011 held at Leipzig, IAHS Publ, Germany, September 2011, vol 355, pp 261–266Google Scholar
  20. 20.
    Hese F (2009) Geologisches 3D Modell der Region Wagrien. Unpublished report, LLUR SH, FlintbekGoogle Scholar
  21. 21.
    Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18(7):899–947. doi:10.1016/0098-3004(92)90029-q CrossRefGoogle Scholar
  22. 22.
    Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinform 6(3):225–244Google Scholar
  23. 23.
    Kolditz O, Bauer S, Böttcher N, Elsworth D, Görke UJ, McDermott CI, Park CH, Singh AK, Taron J, Wang W (2012) Numerical simulation of two-phase flow in deformable porous media: application to carbon dioxide storage in the subsurface. Math Comput Simul 82(10):1919–1935. doi:10.1016/j.matcom.2012.06.010 CrossRefGoogle Scholar
  24. 24.
    Kolditz O, Bauer S, Beyer C, Boettcher N, Dietrich P, Goerke U-J, Kalbacher T, Park C-H, Sauer U, Schuetze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking approach for geologic CO2 injection and storage. Environ Earth Sci 67(2):613–632. doi:10.1007/s12665-012-1656-5 CrossRefGoogle Scholar
  25. 25.
    Kolditz O, Bauer S, Bilke L, Boettcher N, Delfs JO, Fischer T, Goerke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. doi:10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  26. 26.
    Kuehn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Foerster A, Kolditz O, Schaefer D, Partners CLEAN (2012) CLEAN: project overview on CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany). Environ Earth Sci 67(2):311–321. doi:10.1007/s12665-012-1714-z CrossRefGoogle Scholar
  27. 27.
    Li D, Bauer S, (2009) Development of a coupled transport and geochemical reaction code and a first application to CO2 sequestration. In: Huber F, Lützenkirchen J, Pfingsten W, Tiffreau C (eds.) Proceedings of the Workshop TRePro II. Wissenschaftliche Berichte FZKA 7482. Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Karlsruhe, 59-65Google Scholar
  28. 28.
    Li D, Graupner BJ, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824. doi:10.1016/j.egypro.2011.02.317 CrossRefGoogle Scholar
  29. 29.
    LNU SH (2001) Geothermie, eine Perspektive für Schleswig-Holstein. Landesamt für Natur- und Umwelt des Landes Schleswig-Holstein. http://www.umweltdaten.landsh.de/nuis/upool/gesamt/geologie/geothermie_2001.pdf
  30. 30.
    Merkel BJ, Planer-Friedrich B, (2008) Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems. 2nd edition. SpringerGoogle Scholar
  31. 31.
    Park CH, Beyer C, Bauer S, Kolditz O (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environ Geol 55(8):1755–1766. doi:10.1007/s00254-007-1126-7 CrossRefGoogle Scholar
  32. 32.
    Park CH, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230(22):8304–8312. doi:10.1016/j.jcp.2011.07.030 CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Parkhurst DL, Appelo CAJ (1999) User’s Guide to Phreeqc (version 2) —A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259. U. S. Geological SurveyGoogle Scholar
  34. 34.
    Petersen S, Hack K (2007) The thermochemistry library ChemApp and its applications. Int J Mater Res 98(10):935–945. doi:10.3139/146.101551 Google Scholar
  35. 35.
    Röhling HG (1999) The Quickborn Sandston – a new lithostratigraphic unit in the lowermost Middle Buntsandstein (Scythian). Zbl. Geol. Paläont. Teil I, 1998 (7-8):797-812; StuttgartGoogle Scholar
  36. 36.
    Shao H, Kulik DA, Berner U, Kosakowski G, Kolditz O (2009) Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochem J 43(6):E37–E42. doi:10.2343/geochemj.1.0069 CrossRefGoogle Scholar
  37. 37.
    Spycher N, Pruess K (2010) A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp Porous Media 82(1):173–196. doi:10.1007/s11242-009-9425-y CrossRefGoogle Scholar
  38. 38.
    Szymczak P, Ladd AJC (2011) Instabilities in the dissolution of a porous matrix. Geophys Res Lett 38:L07403. doi:10.1029/2011gl046720 CrossRefGoogle Scholar
  39. 39.
    Watanabe N, Wang W, McDermott CI, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280. doi:10.1007/s00466-009-0445-9 CrossRefMATHGoogle Scholar
  40. 40.
    White MD, McGrail BP (2005) STOMP Subsurface Transport Over Multiple Phases, Version 1.0, Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation Chemistry and Reactive Transport. PNNL-15482. Pacific Northwest National Laboratory. Richland, WashingtonGoogle Scholar
  41. 41.
    Xie M, Kolditz O, Moog HC (2011) A geochemical transport model for thermo-hydro-chemical (THC) coupled processes with saline water. Water Resour Res 47:W02545. doi:10.1029/2010WR009270 Google Scholar
  42. 42.
    Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147. doi:10.1016/j.jconhyd.2005.11.003 CrossRefGoogle Scholar
  43. 43.
    Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem Geol 217(3–4):295–318. doi:10.1016/j.chemgeo.2004.12.015 CrossRefGoogle Scholar
  44. 44.
    Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT - A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165. doi:10.1016/j.cageo.2005.06.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dedong Li
    • 1
  • Sebastian Bauer
    • 1
  • Katharina Benisch
    • 1
  • Bastian Graupner
    • 2
  • Christof Beyer
    • 1
  1. 1.Institute of GeosciencesUniversity of KielKielGermany
  2. 2.Eidgenössisches Nuklearsicherheitsinspektorat ENSIBruggSwitzerland

Personalised recommendations