Acta Geotechnica

, Volume 8, Issue 3, pp 223–245 | Cite as

Environmental scanning electron microscopy (ESEM) and nanoindentation investigation of the crack tip process zone in marble

Research Paper

Abstract

This study explores the interaction between crack initiation and nanomechanical properties in the crack-tip fracture process zone of Carrara marble. Specimens with preexisting cracks were loaded in a uniaxial testing machine until the process zone appeared at the tips of the preexisting cracks. ESEM analysis reveals an increase in microcrack density in the process zone with increased loading of the specimen. Nanoindentation testing comprised of lines and grids of single nanoindentations located both near and far from the process zone shows a decrease in both indentation modulus and indentation hardness near grain boundaries in intact material, and with closeness to the process zone. Ultimately, the study confirms that the crack-tip process zone manifests itself as an area of reduced indentation hardness and indentation modulus in marble.

Keywords

Carrara marble Environmental scanning electron microscopy (ESEM) Fracture process zone Nanoindentation 

References

  1. 1.
    Alber M, Brardt A (2003) Factors influencing fracture toughness kic from simple screening tests. Int J Rock Mech Min 40(5):779–784CrossRefGoogle Scholar
  2. 2.
    Alber M, Hauptfleisch U (1999) Generation and visualization of microfractures in carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. Int J Rock Mech Min 36(8):1065–1071CrossRefGoogle Scholar
  3. 3.
    Anders MH, Wiltschko DV (1994) Microfracturing, paleostress and the growth of faults. J Struct Geol 16(6):795–815CrossRefGoogle Scholar
  4. 4.
    Atkinson BK (1979) Fracture toughness of tennessee sandstone and carrara marble using the double torsion testing method. Int J Rock Mech Min 16(1):49–53CrossRefGoogle Scholar
  5. 5.
    Austin NJ (2008) Grain size evolution and strain localization in deformed marbles. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  6. 6.
    Backers T, Stanchits S, Dresen G (2005) Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min 42(7–8):1094–1101CrossRefGoogle Scholar
  7. 7.
    Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP (1976) Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression. Probl Prochn 9:79–83Google Scholar
  8. 8.
    Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP, Shnyrev GD (1976) Determining young’s modulus from the indentor penetration diagram. Ind Lab 41(9):1409–1412Google Scholar
  9. 9.
    Butenuth C, Freitas MHD, Al-Samahiji D, Park HD, Cosgrove JW, Schetelig K (1993) Observations on the measurement of tensile strength using the hoop test. Int J Rock Mech Min 30(2):157–162CrossRefGoogle Scholar
  10. 10.
    Chengyong W, Peide L, Rongsheng H, Xiutang S (1990) Study of the fracture process zone in rock by laser speckle interferometry. Int J Rock Mech Min 27(1):65CrossRefGoogle Scholar
  11. 11.
    Denarie E, Saouma VE, Iocco A, Varelas D (2001) Concrete fracture process zone characterization with fiber optics. J Eng Mech 127(5):494–502Google Scholar
  12. 12.
    Du JJ, Kobayashi AS, Hawkins NM (1990) An experimental–numerical analysis of fracture process zone in concrete fracture specimens. Eng Fract Mech 35(1–3):15–27CrossRefGoogle Scholar
  13. 13.
    Ganneau FP, Constantinides G, Ulm FJ (2006) Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. Int J Solids Struct 43(6):1727–1745MATHCrossRefGoogle Scholar
  14. 14.
    Guo ZK, Kobayashi AS, Hawkins NM (1993) Further studies on fracture process zone for mode I concrete fracture. Eng Fract Mech 46(6):1041–1049CrossRefGoogle Scholar
  15. 15.
    Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials, 4th edn. Wiley, LondonGoogle Scholar
  16. 16.
    Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech (24):361–364Google Scholar
  17. 17.
    Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min 4(2):219–227MathSciNetCrossRefGoogle Scholar
  18. 18.
    Janssen C, Wagner F, Zang A, Dresen G (2001) Fracture process zone in granite: a microstructural analysis. Int J Earth Sci 90(1):46–59CrossRefGoogle Scholar
  19. 19.
    Labuz JF, Shah SP, Dowding CH (1983) Post peak tensile load-displacement response and the fracture process zone in rock. In: 24th U.S. symposium on rock mechanics, pp 421–428Google Scholar
  20. 20.
    Labuz JF, Shah SP, Dowding CH (1987) The fracture process zone in granite: evidence and effect. Int J Rock Mech Min 24(4):235–246CrossRefGoogle Scholar
  21. 21.
    Lin Q, Fakhimi A, Haggerty M, Labuz JF (2009) Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min 46(3):489–497CrossRefGoogle Scholar
  22. 22.
    Marini P, Bellopede R (2009) Bowing of marble slabs: evolution and correlation with mechanical decay. Constr Build Mater 23(7):2599–2605CrossRefGoogle Scholar
  23. 23.
    Miller M, Bobko C, Vandamme M, Ulm FJ (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38:467–476CrossRefGoogle Scholar
  24. 24.
    Molli G, Conti P, Giorgetti G, Meccheri M, Oesterling N (2000) Microfabric study on the deformational and thermal history of the alpi apuane marbles (carrara marbles), Italy. J Struct Geol 22:1809–1825CrossRefGoogle Scholar
  25. 25.
    Nasseri MHB, Mohanty B, Young RP (2006) Fracture toughness measurements and acoustic emission activity in brittle rocks. Rock Damage and Fluid Transport, Part I. Birkhuser Basel, pp 917–945Google Scholar
  26. 26.
    Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  27. 27.
    Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 65(2-3):111–131CrossRefGoogle Scholar
  28. 28.
    Picart P, Diouf B, Lolive E, Berthelot JM (2004) Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital fresnel holograms. Opt Eng 43:1169–1176CrossRefGoogle Scholar
  29. 29.
    Pique EJ, Dortmans L, de With G (2003) A model material approach to the study of fracture process zone of quasi-brittle materials. J Mater Sci 38(19):4003–4011CrossRefGoogle Scholar
  30. 30.
    Swanson PL, Spetzler H (1984) Ultrasonic probing of the fracture process zone in rock using surface waves. 25th U.S. national symposium on rock mechanics, Northwestern University, Evanston, IL, 25–27 June 1984, paper. Sponsorship: U.S. Geological Survey, 10 ppGoogle Scholar
  31. 31.
    Tabor D (1948) A simple theory of static and dynamic hardness. Proc R Soc A Math Phys 192(1029):247–274CrossRefGoogle Scholar
  32. 32.
    Uguz A, Martin JW (1996) Plastic zone size measurement techniques for metallic materials. Mater Charact 37:105–118CrossRefGoogle Scholar
  33. 33.
    Vandamme M (2008) The nanogranular origin of concrete creep: a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  34. 34.
    Wong LNY, Einstein HH (2009) Using high speed video imaging in the study of cracking processes of rock. Geotech Test J 32(2):1–17Google Scholar
  35. 35.
    Wong NY (2008) Crack coalescence in molded gypsum and carrara marble. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  36. 36.
    Wong NY (2009) Crack coalescence in molded gypsum and carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng (42):475–511Google Scholar
  37. 37.
    Wong NY (2009) Crack coalescence in molded gypsum and carrara marble: part 2—microscopic observations and interpretation. Rock Mech Rock Eng (42):513–545Google Scholar
  38. 38.
    Zang A, Wagner FC, Stanchits S, Janssen C, Dresen G (2000) Fracture process zone in granite. J Geophys Res 105:23651–23662CrossRefGoogle Scholar
  39. 39.
    Zhang ZX (2002) An empirical relation between mode i fracture toughness and the tensile strength of rock. Int J Rock Mech Min 39(3):401–406CrossRefGoogle Scholar
  40. 40.
    Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min 35(3):291–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations