Skip to main content

Hypoplastic model for sands with loading surface


Although the hypoplastic models for sands have exhibited good predictive capability in monotonic loading, they are not able to reproduce memory effects and predict excessive plastic accumulation under cyclic loading. To overcome these issues, a loading surface has been incorporated into a hypoplastic model. This surface is capped and has two hardening variables. Notions from the bounding surface plasticity were borrowed in order to formulate the hardening functions. With this novel model, some salient features can be described: the model can account for the accumulation of plastic deformation, a memory effect is provided by the new surface, and stress-induced anisotropy effects observed in sands are successfully simulated. A short calibration guide of the parameters is given, and some simulations for Hostun RF loose sand and Toyoura sand are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. In the mentioned article, this surface was called the “memory” surface.

  2. The name "degree of non-linearity" was proposed by Niemunis [22] referring to the incremental linearity between the stress and the strain tensor.

  3. The paraelastic model developed by the same author [26] has recently addressed these issues for small strain amplitudes , but is not thought for medium strain amplitudes \(\varepsilon^{\rm amp}>10^{-4}.\)

  4. Hereafter referred simply as the stress tensor.

  5. In the hypoplastic model from Wolffersdorff [38], \({\mathsf{ E}}=c_1 {\sf I}+ {{c_2}/{p}} {\bf r} \otimes {\bf r},\) where \(c_i, i=1,2\ldots\) are scalar functions of the stress tensor \({{\varvec{\sigma}}}.\) The same tensor may be rewritten as \({\mathsf{ E}}=c_1 {\sf I}+c_3 {\bf 1}\otimes{\bf 1}+c_4{{\varvec{\sigma}}}^*\otimes{{\varvec{\sigma}}}^*+c_5\left({\bf 1}\otimes{\bf r}+{\bf r}\otimes{\bf 1}\right),\) where the anisotropic terms responsable of the response envelope rotation are the one with parenthesis.

  6. We divide with the norm ∥m∥ to assure that the flow rule m S is a unit tensor (∥m S∥ = 1).

  7. In the article from Taiebat et al. [33] this factor was proposed as (1 − n e e) and therefore limits the void ratio to e < 1/n e . Here we propose instead the factor \(\exp\left(-n_e(e/e_{c0}-1)\right)\) which provides a similar effect in the model response.


  1. Andrianopoulos K, Papadimitriou A, Bouckovalas G (2010) Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil Dyn Earthq Eng 30:895–911

    Article  Google Scholar 

  2. Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  3. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35:99–112

    Article  Google Scholar 

  4. Dafalias Y (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112(9):966–987

    Article  Google Scholar 

  5. Dafalias Y, ASCE M, Manzari M (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130:622–634

    Article  Google Scholar 

  6. Doanh T, Dubujet P, Touron G (2010) Exploring the undrained induced anisotropy of Hostun RF loose sand. Acta Geotech 5:239–256

    Article  Google Scholar 

  7. Doanh T, Finge Z, Boucq S, Dubujet P (2006) Histotropy of Hostun RF loose sand. In: Wu W, Yu HS (eds) Modern trends in geomechanics, Springer proceedings in physics, vol 106, Springer, Berlin, pp 399–411

    Chapter  Google Scholar 

  8. Doanh T, Ibraim I, Matiotti R (1997) Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech Cohesive Frict Mater 2:47–70

    Article  Google Scholar 

  9. Gajo A, Piffer L (1999) The effects of preloading history on the undrained behaviour of saturated loose sand. Soils Found 39(3):43–54

    Article  Google Scholar 

  10. Gudehus G (1979) A comparison of some constitutive laws for soils under radially simmetric loading and unloading. In: Proceedings of 3rd international conference numerical methods geomechanics, pp 1309–1323

  11. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373

    Article  Google Scholar 

  12. Hibbit K, Inc. S (1995) Abaqus 5.6 theory manual

  13. Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford University Press, New York

    Google Scholar 

  14. Ishihara K, Okada S (1978) Yielding of overconsolidated sand and liquefaction model under cyclic stresses. Soils Found 18:57–72

    Article  Google Scholar 

  15. Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found 15:29–44

    Article  Google Scholar 

  16. Jafarzadeh F, Javaheri H, Sadek T, Wood M (2007) Simulation of anisotropic deviatoric response of Hostun sand in true triaxial tests. Comput Geotech 35:703–718

    Article  Google Scholar 

  17. Li X, Dafalias Y (2000) Dilatancy for cohesionless soils. Géotechnique 50:449–460

    Article  Google Scholar 

  18. Manzari M, Dafalias Y (1997) A critical state two-surface plasticity model for sands. Géotechnique 47(2):255–272

    Article  Google Scholar 

  19. Matsuoka H, Nakai T (1977) Stress–strain relationship of soil based on the SMP. In: Proceedings of speciality session 9, pp 153–162. Tokyo (1977). IX Int. Conf. Soil. Mech. Found. Eng

  20. Miura N (1979) A consideration on the stress-strain relation of a sand under high pressures. Jpn Soc Civil Eng 282:127–130

    Google Scholar 

  21. Miura N, Murata H, Yasufuku N (1984) Stress–strain characteristics of sand in a particle-crushing region. Soils Found 24:77–89

    Article  Google Scholar 

  22. Niemunis A (2003) Extended hypoplastic models for soils. Schriftenreihe des Institutes für Grundbau und Bodenmechanil der Ruhr-Universität Bochum. Habilitation. (2003). Germany. Heft 34.

  23. Niemunis A (2008) Incremental driver, user’s manual. University of Karlsruhe KIT, Germany

    Google Scholar 

  24. Niemunis A, Grandas C, Prada L (2009) Anisotropic visco-hypoplasticity. Acta Geotech 4:293–314

    Article  Google Scholar 

  25. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive Frict Mater 2:279–299

    Article  Google Scholar 

  26. Niemunis A, Prada-Sarmiento L, Grandas-Tavera C (2011) Paraelasticity. Acta Geotech 6:1–14

    Article  Google Scholar 

  27. Nova R, Wood D (1978) An experimental program to define the yield function for sands. Soils Found 18:77–86

    Article  Google Scholar 

  28. Pestana J, Whittle A (1995) Compression model for cohesionless soils. Géotechnique 45(4):611–631

    Article  Google Scholar 

  29. Pestana J, Whittle A (1999) Formulation of a unified constitutive model for clays and sands. Int J Numer Anal Methods Geomech 23:1215–1243

    Article  MATH  Google Scholar 

  30. Phillips A, Sierakowski RL (1965) On the concept of the yield surface. Acta Mech 1:29–35

    Article  MATH  Google Scholar 

  31. Reza S, Morgenstern N, Robertson P, Chan D (2002) Yielding and flow liquefaction of loose sand. Soils Found 42(3):19–31

    Article  Google Scholar 

  32. Richart F, Hall J, Woods R (1970) Vibrations of soils and foundations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Taiebat M, Dafalias Y (2008) Sanisand, simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948

    Article  Google Scholar 

  34. Taiebat M, Dafalias Y (2010) Simple yield surface expressions appropriate for soil plasticity. Int J Geomech ASCE 10(4):161–169

    Article  Google Scholar 

  35. Vaid Y, Chung E, Kuerbis RH (1989) Preshearing and undrained response of sand. Soils Found 29:49–61

    Article  Google Scholar 

  36. Vallejos J (2008) Hydrostatic compression model for sandy soils. (technical report). Can Geotech J 45:1169–1179

    Article  Google Scholar 

  37. Verdugo R, Ishijara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91

    Article  Google Scholar 

  38. Wolffersdorff V (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive Frict Mater 1(3):251–271

    Article  Google Scholar 

  39. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18:833–862

    Article  MATH  Google Scholar 

  40. Wu W, Niemunis A (1996) Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech Cohesive Frict Mater 1:145–163

    Article  Google Scholar 

  41. Yamamuro J, Covert K (2001) Monotonic and cyclic liquefaction of very loose sands with high silt content. J Geotech Geoenviron Eng ASCE 127:314–324

    Article  Google Scholar 

Download references


The authors are gratefully acknowledged for the financial support from the DFG (German Research Council) for this research within the research project 1136. The authors would like to thank for the fruitful discussions given by Dr. A. Niemunis and Prof. Y. Dafalias.

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. Fuentes.



1.1 A Consistency condition of the loading surface

The loading surface function F s depends on the stress \({{\varvec{\sigma}}}\) and the hardening variables denoted collectively by H. The evolution equations for the hardening variables are of interest. Similar to elastoplastic relations, we propose the following general relation for the evolution laws of the hardening variables:

$$ {\mathop{\bf H} \limits ^{\circ}}=\bar{\bf H}\dot{\lambda}, $$

where \(\bar{\bf H}=\bar{\bf H}({{\varvec{\sigma}}},{\bf H}, e)\) is the set of hardening functions. For this model, the hardening variables are the backstress ratio tensor and preconsolidation pressure \({\bf H}=\{ \varvec{\alpha}, p_c\}, \) and their objective time derivatives are represented with \({\mathop{\bf H} \limits ^{\circ}}.\) The consistency condition \(\dot{F}_s=0\) is obtained by differentiating the yield condition F s  = 0 and replacing \({\mathop{{\varvec{\sigma}}} \limits ^{\circ}}\) with Eq. 4:

$$ \begin{aligned} \dot{F}_s&=\frac{\partial{F_{s}}}{\partial{{\varvec{\sigma}}}}:{\mathop{{\varvec{\sigma}}} \limits ^{\circ}}+\frac{\partial{{F}_s}}{\partial{\bf H}}:{\mathop{\bf H}\limits ^{\circ}}=0\\ &\frac{\partial{{F}_s}}{\partial{{\varvec{\sigma}}}}:{\mathsf{ E}}:\left({\dot{\varvec{\epsilon}} }-Y {\bf m}^{\rm Hp}\parallel{\dot{\varvec{\epsilon}}}\parallel-{\dot{\lambda}}{\bf m}^{S}\right)+\frac{\partial{F}_s}{\partial{\bf H}}:\bar{\bf H}{\dot{\lambda}} =0 \end{aligned} $$

Solving for \(\dot{\lambda}\) gives:

$$ {\dot{\lambda}}=\frac{{(\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\mathsf{ E}}:\left({\dot{\varvec{\epsilon}} }-Y {\bf m}^{\rm Hp}\parallel{\dot{\varvec{\epsilon}}}\parallel\right)}{H_s+({\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\mathsf{ E}}:{\bf m}^{S}}, $$

where \(H_s=-({ \partial F_s}/{\partial {\bf H}}):\bar{\bf H}\) is the hardening modulus. One can rewrite Eq. 45 as:

$$ {\dot{\lambda}}=\frac{{(\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\mathop{{\varvec{\sigma}}} \limits ^{\circ}}^{\rm Hp}} {H_s+{(\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\mathsf{ E}}:{\bf m}^{S}}, $$

where \({\mathop{{\varvec{\sigma}}} \limits ^{\circ}}^{\rm Hp}={\mathsf{ E}}:\left({\dot{\varvec{\epsilon}} }-{Y}{\bf m}^{\rm Hp}\parallel{\dot{\varvec{\epsilon}}}\parallel\right)\) is the hypoplastic stress rate (see Eq. 2).

1.2 B Tangent (Jacobian) modulus

The Tangent or Jacobian modulus is defined as:

$$ {\sf J}=\frac{\partial{\mathop{{\varvec{\sigma}}} \limits ^{\circ}}}{\partial{\dot{\varvec{\epsilon}} } } $$

From Eqs. 4 and 5, it follows that \({\sf J}\) yields to

$$ {\sf J}={\sf J}^{\rm Hp}-\frac{{\mathsf{ E}}:{\bf m}^{S}\otimes{{(\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\sf J}^{\rm Hp}}}{{(\partial{F_s}}/{\partial{{\varvec{\sigma)}}}}:{\mathsf{ E}}:{\bf m}^{S}+H_s} , $$

where \({\sf J}^{\rm Hp}\) is the Jacobian modulus for the hypoplastic equation 2. In order to deduce an analytical expression for \({\sf J}^{\rm Hp},\) the constitutive equation 2 is rewritten as:

$$ {\mathop{{\varvec{\sigma}}} \limits ^{\circ}}={\mathsf{ E}}:{\dot{\varvec{\epsilon}} }+{\bf N}\parallel{\dot{\varvec{\epsilon}}}\parallel, $$

where \({\bf N}=-Y {\mathsf{ E}}:{\bf m}^{\rm Hp}\) is the non-linear stiffness tensor [22]. Using the derivative \({\partial \parallel{\dot{\varvec{\epsilon}} } \parallel}/{\partial {\dot{\varvec{\epsilon}} }}=\overrightarrow{\dot{\varvec{\epsilon}} }\) and Eq. 47, one can show that \({\sf J}^{\rm Hp}\) gives:

$$ {\sf J}^{\rm Hp}={\mathsf{ E}}+{\bf N}\otimes\overrightarrow{\dot{\varvec{\epsilon}}} $$

1.3 C Critical state slope M

The critical state slope M satisfies the Matsuoka–Nakai relation [19], and we use the explicit solution presented by Niemunis et al. [24]. Function M depends on the critical state friction angle \(\varphi_c\) and the Lode’s angle θ A of the tensor of interest A. In our model, A may be the stress tensor \({{\varvec{\sigma}}}\) or the effective stress ratio n (Eq. 10). In general, the computation of the Lode’s angle θ A is given by

$$ \cos 3\theta_{\bf A}=-3\sqrt{6}\det{\overrightarrow{\bf A}^*}, $$

where \(\overrightarrow{\bf A}^*={\bf A}^*/\parallel{{\bf A}^*}\parallel.\) According to [24], M can be computed with

$$ M={\frac{3\phi-9}{\phi\cos(3\theta)}}\left[{\frac{1}{2}}-\cos\left[{\frac{\alpha}{3}}+{\frac{\pi}{3}}H(\cos(3\theta_{\bf A}))\right]\right], $$

where H() is the Heaviside function (H(x) = 1 for x > 0) and ϕ is defined as

$$ \phi={\frac{9-\sin^2{\varphi_c}}{1-\sin^2\varphi_c}} $$

The angle α is computed with

$$ \alpha=\hbox{arccos}\left\{\hbox{sign}\left[\cos(3\theta_{\bf A}){\frac{b}{(-3+\phi)^3}}\right]\right\}, $$

where sign () extracts the sign of the argument. Finally, factor b reads

$$ b=-27+27\phi-9\phi^2+18\cos^2(3\theta_{\bf A})\phi^2+\phi^3-2\cos^2(3\theta_{\bf A})\phi^3 $$

At isotropic states η = 0, the solution is undetermined and M takes the value of the critical state slope for triaxial compression M = M c .

Let us introduce function g defined as

$$ g={\frac{M(\theta_{\bf A})}{M_c}}, $$

where M c is the critical state slope for triaxial compression. Notice that function g is non-smooth at η = 0 and might be not suitable for some functions in the constitutive model. Therefore, we introduce the smooth function F defined as

$$ F=1+{\frac{\eta}{M_c g(\theta_{{\varvec{\sigma}}})}}(g(\theta_{{\varvec{\sigma}}})-1), $$

where \(\theta_{{\varvec{\sigma}}}\) is the Lode’s angle for the stress tensor \({{\varvec{\sigma}}}.\) A similar function was previously proposed by Wolffersdorff [38] denoted with the same symbol F but using a different Lode’s angle \(\theta_W=\theta_{{\varvec{\sigma}}}-30^{\circ}.\)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuentes, W., Triantafyllidis, T. & Lizcano, A. Hypoplastic model for sands with loading surface. Acta Geotech. 7, 177–192 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Anisotropy
  • Constitutive model
  • Hypoplasticity
  • Sands
  • Sanisand