Skip to main content
Log in

PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We present a tool for coupling thermochemistry with mechanics. Thermodynamic potential functions are used to calculate reversible material properties such as thermal expansion coefficient, specific heat, elastic shear modulus, bulk modulus and density. These material properties are thermodynamically self consistent. Transport properties such as thermal conductivity (diffusivity) and melt viscosity are also included, but these are derived from laboratory experiments. The transport properties are included to provide a reference database as a common standard of material properties necessary for comparing geological, geodynamic and geotechnical calculations. We validate the chemically derived elastic material properties by comparing computed seismic velocities for a pyrolitic composition to the seismic models PREM and ak135.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behn MD, Kelemen PB (2003) Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem Geophys Geosyst 4(5):1–57

    Article  Google Scholar 

  2. Bina CR (1991) Mantle discontinuities. Rev Geophys 29:783–793

    Google Scholar 

  3. Bina CR (1998) Mantle mineralogy—Olivine emerges from isolation. Nature. 392(6677):650–+

    Google Scholar 

  4. Bina CR (1998) A note on latent heat release from disequilibrium phase transformations and deep seismogenesis. Earth Planets Space 50(11–12):1029–1034

    Google Scholar 

  5. Bina CR, Wood BJ (1987) Olivine-spinel transitions—experimental and thermodynamic constraints and implications for the nature of the 400-Km seismic discontinuity. J Geophys Res-Solid 92(B6):4853–4866

    Article  Google Scholar 

  6. Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Int 138(3–4):197–222

    Article  Google Scholar 

  7. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals in rock physics and phase relations—a handbook of physical constants, A.R.S. 3, Editor

  8. Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290(6):666–718

    MathSciNet  Google Scholar 

  9. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1–2):524–541

    Article  Google Scholar 

  10. Connolly JAD, Kerrick DM (2002) Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. Earth Planet Sci Lett 204(1–2):61–74

    Article  Google Scholar 

  11. Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metamorph Geol 20(7):697–708

    Article  Google Scholar 

  12. Deschamps F, Trampert J (2004) Towards a lower mantle reference temperature and composition. Earth Planet Sci Lett 222(1):161–175

    Article  Google Scholar 

  13. Deuss A, Redfern SAT, Chambers K, Woodhouse JH (2006) The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science 311(5758):198–201

    Article  Google Scholar 

  14. Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res-Solid 94(B2):1895–1912

    Article  Google Scholar 

  15. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25(4):297–356

    Article  Google Scholar 

  16. Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212

    Article  Google Scholar 

  17. Grand SP (2002) Mantle shear-wave tomography and the fate of subducted slabs. Philoso Trans Royal Soc Lond Ser Math Phys Eng Sci 360(1800):2475–2491

    Article  Google Scholar 

  18. Hart SR, Zindler A (1986) In search of a bulk-earth composition. Chem Geol 57(3–4):247–267

    Article  Google Scholar 

  19. Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol. 16:309–343

    Article  Google Scholar 

  20. Hoschek G (2004) Comparison of calculated P-T pseudosections for a kyanite eclogite from the Tauern Window, Eastern Alps, Austria. Eur J Miner 16(1):59–72

    Article  MathSciNet  Google Scholar 

  21. Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416

    Article  Google Scholar 

  22. Irifune T, Isshiki M (1998) Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392(6677):702–705

    Article  Google Scholar 

  23. Irifune T, Ringwood AE (1987) Phase-transformations in a harzburgite composition to 26 Gpa—implications for dynamical behavior of the subducting slab. Earth Planet Sci Lett 86(2–4):365–376

    Article  Google Scholar 

  24. Ita J, Stixrude L (1992) Petrology, elasticity, and composition of the mantle transition zone. J Geophys Res-Solid Earth 97(B5):6849–6866

    Article  Google Scholar 

  25. Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev Geophys 39(4):507–534

    Article  Google Scholar 

  26. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from travel-times. Geophys J Int 122(1):108–124

    Article  Google Scholar 

  27. Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res-Solid Earth 111:B10

    Google Scholar 

  28. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Article  Google Scholar 

  29. Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MSI (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780

    Article  Google Scholar 

  30. Mattern E, Matas J, Ricard Y, Bass J (2005) Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys J Int 160(3):973–990

    Article  Google Scholar 

  31. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  32. Montagner JP, Kennett BLN (1996) How to reconcile body-wave and normal-mode reference earth models. Geophys J Int 125(1):229–248

    Article  Google Scholar 

  33. Ozkahraman HT, Selver R, Isik EC (2004) Determination of the thermal conductivity of rock from P-wave velocity. Int J Rock Mech Miner 41(4):703–708

    Article  Google Scholar 

  34. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  35. Ringwood AE (1979) Origin of the Earth and Moon. Springer, New York

    Google Scholar 

  36. Ringwood AE (1991) Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55(8):2083–2110

    Article  Google Scholar 

  37. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  38. Saxena SK (1996) Earth mineralogical model: Gibbs free energy minimization computation in the system MgO-FeO-SiO2. Geochim Cosmochim Acta 60(13):2379–2395

    Article  Google Scholar 

  39. Staudigel H, Plank T, White B, Schmincke H-U (1996) Geochemical fluxes during seafloor alteration of the basaltic upper ocean crust: DSDP 417 and 418. In: Bebout GE et al (eds) Subduction: top to bottom, American Geophysical Union Washington, pp 19–38

  40. Stixrude L, Lithgow-Bertelloni C (2005) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J Geophys Res-Solid Earth 110:B03204

    Article  Google Scholar 

  41. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—I. Physical properties. Geophys J Int 162(2):610–632

    Article  Google Scholar 

  42. Taylor SR, McLennan M (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford, p 312

    Google Scholar 

  43. Trampert J, Vacher P, Vlaar N (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle. Phys Earth Planet Int 124(3–4):255–267

    Article  Google Scholar 

  44. Vacher P, Mocquet A, Sotin C (1998) Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys Earth Planet In 106(3–4):275–298

    Article  Google Scholar 

  45. Watt JP, Davies GF, Oconnell RJ (1976) Elastic properties of composite-materials. Rev Geophys 14(4):541–563

    Article  Google Scholar 

  46. Weidner DJ (1985) A mineral physics test of a pyrolite mantle. Geophys Res Lett 12(7):417–420

    Article  Google Scholar 

  47. Zoth G, Hanel R (1988) Appendix. In: Hanel R, Stegena L, Rybach L (eds) Handbook of terrestrial heat-flow density determination. Kluwer, Dordrecht, pp 449–466

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to IGCP 557. The authors would like to acknowledge the support by the Western Australian Government, through the Premiers Fellowship Program and the Minerals Downunder Flagship CSIRO, The University of Western Australia as well as the pmd × CRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Siret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siret, D., Poulet, T., Regenauer-Lieb, K. et al. PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotech. 4, 107–115 (2009). https://doi.org/10.1007/s11440-008-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-008-0065-0

Keywords

Navigation