Skip to main content
Log in

A simple hypoplastic model for normally consolidated clay

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

    Google Scholar 

  2. Bauer E (2000) Conditions for embedding Casagrade’s critical states into hypoplasticity. Mech Cohes Frict Mater 5:125–148

    Article  Google Scholar 

  3. Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(1):99–112

    Google Scholar 

  4. Butterfield R(1979) A natural compression law for soils. Geotechnique 29(4):469–480

    Google Scholar 

  5. Chambon R, Desrues J, Charlier R, Hammad W (1994). CLoE, a new rate type constitutive model for geomaterials: theoretical basis and implementation. Int J Numer Anal Methods Geomech 18(4):253–278

    Article  MATH  Google Scholar 

  6. Gudehus G (1979) A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Wittke (ed) Proceeds of the third international conference on numerical methods in geomechanics. A.A. Balkema, Aachen, pp 1309–1325.

  7. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Google Scholar 

  8. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31:365–373

    Article  Google Scholar 

  9. Huang W (2000) Hypoplastic modelling of shear localization in granular materials. PhD Thesis, Graz University of Technology

  10. Kolymbas D (2000) Introduction to hypoplasticity. A.A. Balkema, Rotterdam

    Google Scholar 

  11. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460

    Google Scholar 

  12. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29:311–336

    Article  MathSciNet  MATH  Google Scholar 

  13. Nakai T, Matsuoka H, Okuno N, Tsuzuki K (1986) True triaxial tests on normally consolidated clay and analysis of the observed shear behaviour using elastoplastic constitutive models. Soils Found 26(4):67–78

    Google Scholar 

  14. Nakai T, Hinokio M (2004) A simple elastoplastic model for normally and overconsolidated soils with unified materials parameters. Soils Found 44(2):53–70

    Google Scholar 

  15. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2(4):279–299

    Article  Google Scholar 

  16. Niemunis A (2003) Extended hypoplastic model for soils. Schreftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 34, Bochum

  17. Roscoe KH, Schofield AN, Wroth P (1958) On the yielding of soils. Geotechnique 8:22–52

    Article  Google Scholar 

  18. Schofield A, Wroth P (1968) Critical state soil mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  19. Tamagnini C, Viggiani G, Chambon R (2000) A review of two different approaches to hypoplasticity. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin Heidelberg New York, pp 107–165

    Google Scholar 

  20. Truesdell C (1955) Hypoplasticity. J Ration Mech Anal 4:83–133

    MathSciNet  Google Scholar 

  21. von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1:251–271

    Article  Google Scholar 

  22. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Wu W, Kolymbas D (1990) Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech Mater 9:245–253

    Article  Google Scholar 

  24. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18:833–862

    Article  MATH  Google Scholar 

  25. Wu W, Niemunis A (1996) Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech Cohes Frict Mater 1:145–163

    Article  Google Scholar 

  26. Wu W, Kolymbas D (2000) Hypoplasticity then and now. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin Heidelberg New York, pp 57–105

    Google Scholar 

  27. Yao YP, Sun DA, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Methods Geomech 28:323–337

    Article  MATH  Google Scholar 

  28. Yu HS (1998) CASM: a unified state parameter model for clay and sand. Int J Numer Anal Methods Geomech 22:621–653

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The financial support of Australian Research Council (grant DP0453056) is gratefully acknowledged by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Appendix

Appendix

Here we present a brief description of the hypoplastic model proposed by Mašín [12]. The constitutive equation is

$$\dot{\varvec{\sigma} } = f_{\rm s} \,{\mathbf {L}}:\dot{\varvec{\varepsilon} } + f_{\rm s} f_{\rm d} {\user2{N}}\left\|\dot{\varvec{\varepsilon} }\right\|\,.$$

Here the fourth order tensor L takes the form

$$\,{\mathbf {L}}\, = 3(c_{1} \,{\mathbf {I}}\, + c_{2}a^{2} \hat{\varvec{\sigma} } \otimes \hat{\varvec{\sigma} }),$$

and the second order tensor N is given as

$${\user2 {N}} = {\mathbf {L}}:\left(- Y\frac{{\user2 {m}}}{{\left\|{\user2 {m}}\right\|}}\right),$$

with m being defined by

$${\user2 {m}} = - \frac{a}{F}{\left[ {\frac{{(F/a)^{2} - \hat{\varvec{\sigma} }_{\rm d}:\hat{\varvec{\sigma} }_{\rm d} }}{{(F/a)^{2} + \hat{\varvec{\sigma} }:\hat{\varvec{\sigma} }}}\hat{\varvec{\sigma} } + \hat{\varvec{\sigma} }_{\rm d} } \right]}.$$

In these equations, the parameters a and F are related to the critical friction angle φc and the Lode angle θ through the relation [21]

$$a = \frac{{{\sqrt 3 }\,(3 - \sin\,\varphi_{\rm c})}}{{2{\sqrt 2 }\,\sin\,\varphi_{\rm c} }},\quad F = {\sqrt {\frac{1}{8}\tan ^{2} \psi + \frac{{2 - \tan ^{2} \psi }}{{2 + {\sqrt 2 }\tan \psi \cos (3\theta)}}} } - \frac{1}{{2{\sqrt 2 }}}\tan \psi$$

with \(\tan \psi = {\sqrt 3 }|\hat{\varvec{\sigma} }_{\rm d} \,|.\) The parameter Y in expression for N, known as the degree of nonlinearity [16], has the following form:

$$Y = {\left({\frac{{{\sqrt 3 }a}}{{3 + a^{2} }} - 1} \right)}\frac{{(I_{1} I_{2} + 9I_{3})(1 - \sin ^{2} \varphi_{\rm c})}}{{8I_{3} \sin ^{2} \varphi_{\rm c} }} + \frac{{{\sqrt 3 }a}}{{3 + a^{2} }},$$

where I 1, I 2 and I 3 are the first, second and third stress invariants, respectively:

$$I_{1} = \operatorname{tr} \varvec{\sigma}, \quad I_{2} = \frac{1}{2}[\varvec{\sigma}:\varvec{\sigma} - (I_{1})^{2} ]\,,\quad I_{3} = \det \varvec{\sigma}.$$

The factors f s and f d in Eq. 29 are defined by

$$f_{\rm s} = - \frac{{\operatorname{tr} \varvec{\sigma} }}{{\lambda^{*} }}(3 + a^{2} - 2^{\alpha } a{\sqrt 3 })^{{ - 1}}, \quad f_{\rm d} = {\left[ { - \frac{1}{2}\operatorname{tr} \varvec{\sigma} \exp {\left({\frac{{\log (1 + e) - N^{*} }}{{\lambda ^{*} }}} \right)}} \right]}^{\alpha },$$

where the scalar parameter α can be determined from

$$\alpha = \frac{1}{{\ln 2}}\ln {\left[ {\frac{{\lambda ^{*} - \kappa ^{*} }}{{\lambda ^{*} + \kappa ^{*} }}\frac{{3 + a}}{{{\sqrt 3 }a}}} \right]}.$$

The factors c 1 and c 2 in above equation are related to other parameters via

$$c_{1} = \frac{{2(3 + a^{2} - 2^{\alpha } a{\sqrt 3 })}}{{9r}}\,,\quad c_{2} = 1 + (1 - c_{1})\frac{3}{{a^{2} }}.$$

The model contains five parameters: φc, λ*, κ*, r and N *, where φc is the critical state friction angle, λ* and κ* has the same meaning as in Eq.10a, b, r is the ratio of the bulk modulus over the shear modulus at an isotropic stress state, r=K + i /G i , and N * represents the logarithmic specific volume at a mean pressure of 1 kPa so that N *=ln (1+e) |p=1 kPa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, WX., Wu, W., Sun, DA. et al. A simple hypoplastic model for normally consolidated clay. Acta Geotech. 1, 15–27 (2006). https://doi.org/10.1007/s11440-005-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-005-0003-3

Keywords

Navigation