Science Bulletin

, Volume 61, Issue 22, pp 1739–1745 | Cite as

Peroxidase-like properties of Ruthenium nanoframes

  • Haihang Ye
  • Jacob Mohar
  • Qingxiao Wang
  • Massimo Catalano
  • Moon J. Kim
  • Xiaohu Xia
Article Materials Science


This work reports the inherent peroxidase-like properties of Ruthenium (Ru) nanoframes. After templating with Palladium (Pd) seeds, Ru nanoframes with an octahedral shape, average edge length of 6.2 nm, and thickness of 1.8 nm were synthesized in high purity (>95 %) and good uniformity. Using the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 as a model catalytic reaction, the Ru frames were demonstrated to be approximately three times more active than natural peroxidases in catalyzing the formation of colored products. As compared to their natural counterparts, Ru frames have a stronger binding affinity to TMB as well as a weaker binding affinity to hydrogen peroxide during the catalysis. The Ru frames as peroxidase mimics proved to be chemically and thermally stable. This work represents the first demonstration of Ru nanostructure-based peroxidase mimics and is therefore expected to inspire future research on bio-applications of Ru nanomaterials.


Ruthenium Nanoframes Peroxidase Enzyme mimic Catalysis 


本研究报道了钌纳米框架的过氧化物酶属性。选用钯纳米晶种为模板,可以制备得到具有八面体形貌的钌纳米框架,其平均边长为6.2纳米,厚度为1.8纳米,产物产率高(>95 %)并且形貌均匀。以过氧化氢氧化3,3′,5,5′-四甲基联苯胺分子(TMB)反应为催化模型,钌纳米框架的过氧化物酶活性比天然过氧化物酶高出接近3倍。和天然过氧化物酶相比,钌纳米框架在催化反应的过程中对3,3′,5,5′-四甲基联苯胺的结合力较强,但是对过氧化氢的结合力较弱。同时,钌纳米框架在催化反应中展示出较好的化学和热力学稳定性能。本研究首次提出了一种基于钌纳米晶的过氧化物模拟酶, 为钌纳米结构在生物应用方向的发展提供新的思路和前景。



This work was partially supported by startup funds from Michigan Technological University, and the Michigan Translational Research & Commercialization Fund (MTRAC), Grant Case-48161 of the 21st Century Jobs Trust Fund received through the Michigan Strategic Fund from the State of Michigan. The MTRAC program is funded by the Michigan Strategic Fund with program oversight by the Michigan Economic Development Corporation.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRefPubMedGoogle Scholar
  2. 2.
    Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189CrossRefPubMedGoogle Scholar
  3. 3.
    Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105CrossRefPubMedGoogle Scholar
  4. 4.
    Breslow R (1995) Biomimetic chemistry and artificial enzymes: catalysis by design. Acc Chem Res 28:146–153CrossRefGoogle Scholar
  5. 5.
    Li W, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997CrossRefGoogle Scholar
  6. 6.
    Xianyu Y, Wang Z, Jiang X (2014) A plasmonic nanosensor for immunoassay via enzyme-triggered click chemistry. ACS Nano 8:12741–12747CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng H, Zhang L, He J et al (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88:5489–5497CrossRefPubMedGoogle Scholar
  8. 8.
    Wang X, Hua Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60CrossRefGoogle Scholar
  9. 9.
    Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583ADSCrossRefPubMedGoogle Scholar
  10. 10.
    Zhang X, Gong S, Zhang Y et al (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20:5110–5116CrossRefGoogle Scholar
  11. 11.
    Liu X, Wang Q, Zhao H et al (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137:4552–4558ADSCrossRefPubMedGoogle Scholar
  12. 12.
    André R, Natálio F, Humanes M et al (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509CrossRefGoogle Scholar
  13. 13.
    Xiao X, Luan Q, Yao X et al (2009) Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase. Biosens Bioelectron 24:2447–2451CrossRefPubMedGoogle Scholar
  14. 14.
    Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254CrossRefPubMedGoogle Scholar
  15. 15.
    Su H, Liu DD, Zhao MM et al (2015) Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Inter 7:8233–8242CrossRefGoogle Scholar
  16. 16.
    Gao Z, Hou L, Xu M et al (2014) Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci Rep 4:3966ADSPubMedPubMedCentralGoogle Scholar
  17. 17.
    He W, Wu X, Liu J et al (2010) Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22:2988–2994CrossRefGoogle Scholar
  18. 18.
    Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019CrossRefGoogle Scholar
  19. 19.
    Fan J, Yin J, Ning B et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32:1611–1618CrossRefPubMedGoogle Scholar
  20. 20.
    Xia X, Zhang J, Lu N et al (2015) Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9:9994–10004CrossRefPubMedGoogle Scholar
  21. 21.
    Manea F, Houillon FB, Pasquato L et al (2004) Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed 43:6165–6169CrossRefGoogle Scholar
  22. 22.
    Shi W, Wang Q, Long Y et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697CrossRefGoogle Scholar
  23. 23.
    Wang X, Qu K, Xu B et al (2011) Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res 4:908–920CrossRefGoogle Scholar
  24. 24.
    Song Y, Qu K, Zhao C et al (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210CrossRefPubMedGoogle Scholar
  25. 25.
    Cui R, Huang H, Yin Z et al (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673CrossRefPubMedGoogle Scholar
  26. 26.
    Lei CX, Hu SQ, Shen GL et al (2003) Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 59:981–988CrossRefPubMedGoogle Scholar
  27. 27.
    Love JC, Estroff LA, Kriebel JK et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRefPubMedGoogle Scholar
  28. 28.
    Balcerzak M, Kaczmarczyk M (2001) Rapid derivative spectrophotometric method for the determination of platinum in Pt-Ru/C catalyst using iodide media. Anal Sci 17:1321–1324CrossRefPubMedGoogle Scholar
  29. 29.
    Ye H, Wang Q, Catalano M et al (2016) Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett 16:2812–2817ADSCrossRefPubMedGoogle Scholar
  30. 30.
    Porter DJT, Bright JH (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. J Biol Chem 258:9913–9924Google Scholar
  31. 31.
    Xia X, Figueroa-Cosme L, Tao J et al (2014) Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc 136:10878–10881CrossRefPubMedGoogle Scholar
  32. 32.
    Karaseva EI, Losev YP, Metelitsa DI (2002) Peroxidase-catalyzed Oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of 2,4-dinitrosoresorcinol and polydisulfide derivatives of resorcinol and 2,4-dinitrosoresorcinol. Russ J Bioorg Chem 28:128CrossRefGoogle Scholar
  33. 33.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666CrossRefGoogle Scholar
  34. 34.
    Josephy PD, Eling TE, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675PubMedGoogle Scholar
  35. 35.
    Cai Q, Lu S, Liao F et al (2014) Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 6:8117–8123ADSCrossRefPubMedGoogle Scholar
  36. 36.
    Frey A, Meckelein B, Externest D et al (2000) A stable and highly sensitive 3,5,3′,5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods 233:47–56CrossRefPubMedGoogle Scholar
  37. 37.
    Hagen J (2006) Industrial catalysis: a practical approach. Wiley-VCH, WeinheimGoogle Scholar
  38. 38.
    Pan C, Pelzer K, Philippot K (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haihang Ye
    • 1
  • Jacob Mohar
    • 1
  • Qingxiao Wang
    • 2
  • Massimo Catalano
    • 2
  • Moon J. Kim
    • 2
  • Xiaohu Xia
    • 1
  1. 1.Department of ChemistryMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations