Molecular imaging of enzyme activity in vivo using activatable probes

激活型分子影像探针应用于活体检测酶活性的研究进展

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Precise measurement of enzyme activity in living systems with molecular imaging probes is becoming an important technique to unravel the functional roles of different enzymes in biological processes. Recent progress has been made in the development of a myriad of molecular imaging probes featuring different imaging modalities, including optical imaging, magnetic resonance imaging, nuclear imaging, and photoacoustic imaging, allowing for non-invasive detection of various enzyme activities in vivo with high sensitivity and high spatial resolution. Among these imaging probes, activatable or “smart” probes, whose imaging signal can be specifically switched from the “off” to “on” state upon interaction with a target enzyme, are particularly attractive due to their improved sensitivity and specificity. Here, recent advances in the development of activatable probes capable of imaging different enzyme activities in vivo are summarized based on different imaging modalities, and current challenges and future perspectives are discussed.

摘要

利用分子影像探针在活体上进行酶活性的无损、精确检测对研究酶的活性与功能具有重要意义。近年来,不同模态的分子影像探针,包括光学成像、核磁共振成像、核素成像和光声成像探针等被广泛报道,并成功应用于活体内高灵敏、高分辨的检测各种酶活性。本文主要综述了激活型分子影像探针及其在活体内可视化检测酶活性的研究进展,并讨论了这一研究领域目前面临的挑战和未来的发展方向。

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Baruch A, Jeffery DA, Bogyo M (2004) Enzyme activity—it’s all about image. Trends Cell Biol 14:29–35

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803:103–120

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastas Rev 25:9–34

    CAS  Article  Google Scholar 

  4. 4.

    Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gu K, Xu Y, Li H et al (2016) Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc 138:5334–5340

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Cai W, Rao J, Gambhir SS et al (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5:2624–2633

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Razgulin A, Ma N, Rao J (2011) Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev 40:4186–4216

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44:83–90

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Zhang W, Gao C (2015) Recent advances in cell imaging and cytotoxicity of intracellular stimuli-responsive nanomaterials. Sci Bull 60:1973–1979

    CAS  Article  Google Scholar 

  11. 11.

    Lee S, Park K, Kim K et al (2008) Activatable imaging probes with amplified fluorescent signals. Chem Commun 36:4250–4260

    Article  CAS  Google Scholar 

  12. 12.

    Licha K, Resch-Genger U (2011) Probes for optical imaging: new developments. Drug Discov Today Technol 8:e87–e94

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Thomas JA (2015) Optical imaging probes for biomolecules: an introductory perspective. Chem Soc Rev 44:4494–4500

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    He X, Wang K, Cheng Z (2010) In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:349–366

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Drake CR, Miller DC, Jones EF (2011) Activatable optical probes for the detection of enzymes. Curr Org Synth 8:498–520

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cheng Y, Xie H, Sule P et al (2014) Fluorogenic probes with substitutions at the 2 and 7 positions of cephalosporin are highly BlaC-specific for rapid Mycobacterium tuberculosis detection. Angew Chem Int Ed 53:9360–9364

    CAS  Article  Google Scholar 

  17. 17.

    Zheng M, Huang H, Zhou M et al (2015) Cysteine-mediated intracellular building of luciferin to enhance probe retention and fluorescence turn-on. Chem Eur J 21:10506–10512

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Xue H, Xu X, Fu YV (2015) New insights in pre-replication complex formation with single-molecule visualization. Sci Bull 60:1133–1135

    Article  Google Scholar 

  19. 19.

    Ogawa M, Kosaka N, Choyke PL et al (2009) H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS Chem Biol 4:535–546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ofori LO, Withana NP, Prestwood TR et al (2015) Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem Biol 10:1977–1988

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bremer C, Bredow S, Mahmood U et al (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221:523–529

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Lee S, Choi KY, Chung H et al (2011) Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjugate Chem 22:125–131

    CAS  Article  Google Scholar 

  23. 23.

    Kong Y, Yao H, Ren H et al (2010) Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci USA 107:12239–12244

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Versluis F, van Esch JH, Eelkema R (2016) Synthetic self-assembled materials in biological environments. Adv Mater 28:4576–4592

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gao Y, Shi J, Yuan D et al (2012) Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun 3:1033

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ye D, Liang G, Ma ML et al (2011) Controlling intracellular macrocyclization for the imaging of protease activity. Angew Chem Int Ed 50:2275–2279

    CAS  Article  Google Scholar 

  27. 27.

    Ye D, Shuhendler AJ, Cui L et al (2014) Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem 6:519–526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Shen B, Jeon J, Palner M et al (2013) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew Chem Int Ed 52:10511–10514

    CAS  Article  Google Scholar 

  29. 29.

    Witney TH, Hoehne A, Reeves RE et al (2015) A systematic comparison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment. Clin Cancer Res 21:3896–3905

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ye D, Shuhendler AJ, Pandit P et al (2014) Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem Sci 4:3845–3852

    Article  PubMed  Google Scholar 

  31. 31.

    Nejadnik H, Ye D, Lenkov OD et al (2015) Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS Nano 9:1150–1160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Shuhendler AJ, Ye D, Brewer KD et al (2015) Molecular magnetic resonance imaging of tumor response to therapy. Sci Rep 5:14759

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Terreno E, Castelli DD, Viale A et al (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tu C, Osborne EA, Louie AY (2011) Activatable T(1) and T(2) magnetic resonance imaging contrast agents. Ann Biomed Eng 39:1335–1348

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Shen C, New EJ (2013) Promising strategies for Gd-based responsive magnetic resonance imaging contrast agents. Curr Opin Chem Biol 17:158–166

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Davies GL, Kramberger I, Davis JJ (2013) Environmentally responsive MRI contrast agents. Chem Commun 49:9704–9721

    CAS  Article  Google Scholar 

  37. 37.

    Do QN, Ratnakar JS, Kovacs Z et al (2014) Redox- and hypoxia-responsive MRI contrast agents. ChemMedChem 9:1116–1129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    De Leon-Rodriguez LM, Martins AF, Pinho MC et al (2015) Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 42:545–565

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Hanaoka K, Kikuchi K, Terai T et al (2008) A Gd3+-based magnetic resonance imaging contrast agent sensitive to beta-galactosidase activity utilizing a receptor-induced magnetization enhancement (RIME) phenomenon. Chem Eur J 14:987–995

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nivorozhkin AL, Kolodziej AF, Caravan P et al (2001) Enzyme-activated Gd(3+) magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew Chem Int Ed 40:2903–2906

    CAS  Article  Google Scholar 

  42. 42.

    Kim J, Wu Y, Guo Y et al (2015) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol 10:163–178

    CAS  Article  Google Scholar 

  43. 43.

    Chen JW, Querol Sans M, Bogdanov A Jr et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481

    Article  PubMed  Google Scholar 

  44. 44.

    Nahrendorf M, Sosnovik D, Chen JW et al (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cao CY, Shen YY, Wang JD et al (2013) Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci Rep 3:1024

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Loving GS, Caravan P (2014) Activation and retention: a magnetic resonance probe for the detection of acute thrombosis. Angew Chem Int Ed 53:1140–1143

    CAS  Article  Google Scholar 

  47. 47.

    Su JL, Wang B, Wilson KE et al (2010) Advances in clinical and biomedical applications of photoacoustic imaging. Exp Opin Med Diagn 4:497–510

    Article  Google Scholar 

  48. 48.

    Lu HD, Wilson BK, Heinmiller A et al (2016) Narrow absorption NIR wavelength organic nanoparticles enable multiplexed photoacoustic imaging. ACS Appl Mater Inter 8:14379–14388

    Article  CAS  Google Scholar 

  49. 49.

    Huang P, Gao Y, Lin J et al (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Wang L, Yang PP, Zhao XX et al (2016) Self-assembled nanomaterials for photoacoustic imaging. Nanoscale 8:2488–2509

    ADS  CAS  Article  PubMed  Google Scholar 

  51. 51.

    Wu D, Huang L, Jiang MS et al (2014) Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci 15:23616–23639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA et al (2013) Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J Am Chem Soc 135:11015–11022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zhang D, Qi GB, Zhao YX et al (2015) In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv Mater 27:6125–6130

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Yang K, Zhu L, Nie L et al (2014) Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. Theranostics 4:134–141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    van Duijnhoven SM, Robillard MS, Nicolay K et al (2015) Development of radiolabeled membrane type-1 matrix metalloproteinase activatable cell penetrating peptide imaging probes. Molecules 20:12076–12092

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Oien NP, Nguyen LT, Jernigan FE et al (2014) Long-wavelength fluorescent reporters for monitoring protein kinase activity. Angew Chem Int Ed 53:3975–3978

    CAS  Article  Google Scholar 

  57. 57.

    Silvers WC, Prasai B, Burk DH et al (2013) Profluorogenic reductase substrate for rapid, selective, and sensitive visualization and detection of human cancer cells that overexpress NQO1. Angew Chem Int Ed 135:309–314

    CAS  Google Scholar 

  58. 58.

    Prasai B, Silvers WC, McCarley RL (2015) Oxidoreductase-facilitated visualization and detection of human cancer cells. Anal Chem 87:6411–6418

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Lee SY, Jeon SI, Jung S et al (2014) Targeted multimodal imaging modalities. Adv Drug Deliv Rev 76:60–78

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Huang CW, Li Z, Conti PS (2012) Radioactive smart probe for potential corrected matrix metalloproteinase imaging. Bioconjugate Chem 23:2159–2167

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21505070, 21632008) and Natural Foundation of Jiangsu Province (BK20150567).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deju Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, R., Ye, D. Molecular imaging of enzyme activity in vivo using activatable probes. Sci. Bull. 61, 1672–1679 (2016). https://doi.org/10.1007/s11434-016-1175-y

Download citation

Keywords

  • Activatable probe
  • Molecular imaging
  • Enzyme
  • In vivo
  • Fluorescence

关键词

  • 激活型探针
  • 分子成像分析
  • 活体
  • 荧光