Skip to main content
Log in

Adaptor protein APPL1 interacts with EGFR to orchestrate EGF-stimulated signaling

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Epidermal growth factor receptor (EGFR) mediates multiple signaling pathways that regulate cell migration, proliferation, and differentiation. Adaptor protein APPL1 has been reported to function as a downstream effector of EGFR signaling pathway. However, molecular mechanisms underlying the role of APPL1 downstream of EGFR signaling remains elusive. Here, we identified APPL1 as a critical molecule that interacts with EGFR. Suppression of APPL1 by siRNA inhibited EGF-stimulated Akt phosphorylation. Functionally, EGF stimulation of cells caused phosphorylation of APPL1 at Ser636, which subsequently promoted the interaction between APPL1 and EGFR, indicating that APPL1 sensitizes EGF stimulation by acting at a site downstream of the EGFR signaling. Importantly, non-phosphorylatable mutant of APPL1 reduced cell migration compared with wild-type APPL1 in an Akt-dependent manner. Our study reveals a novel function of APPL1 in EGF signaling and defines a novel molecular mechanism by which phosphorylation of APPL1 upon EGF stimulation regulates cell migration underlying EGF-stimulated Akt pathway.

摘要

表皮生长因子信号轴调控细胞可塑性与命运决定等重要 细胞生理学过程, 但细胞信号转导枢纽蛋白APPL1 如何介导表皮生 长因子信号轴在细胞迁移过程中的分子机制仍不甚清晰。我们在本 项研究中鉴定出APPL1 是一个新的表皮生长因子受体结合蛋白并调 控表皮生长因子介导的细胞定向迁移活动。利用RNA 干扰技术, 我 们发现:在细胞中敲低APPL1 可下调EGF 介导的Akt 和GSK3β 的 磷酸化水平。进一步的解析发现, EGF 刺激会引起APPL1 第636 位丝氨酸的磷酸化, 进而增强APPL1 与表皮生长因子受体的结合 力。通过转入模拟磷酸化及不可被磷酸化的APPL1 突变体, 我们发 现抑制APPL1 第636 位丝氨酸的磷酸化可阻碍表皮生长因子介导 的细胞迁移活动。我们认为, APPL1 蛋白通过第636 位丝氨酸的磷 酸化增强其与表皮生长因子受体的结合及其在细胞质膜上的稳定性, 从而延续表皮生长因子信号轴的活性并有效调控细胞的定向迁移活动。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  2. Jiang Y, Zhao X, Xiao Q et al (2014) Snail and Slug mediate tamoxifen resistance in breast cancer cells through activation of EGFR–ERK independent of epithelial–mesenchymal transition. J Mol Cell Biol 6:352–354

    Article  PubMed  Google Scholar 

  3. Blobel CP (2005) Adams: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  4. Zhao X, Wang D, Liu X et al (2013) Phosphorylation of the bin, amphiphysin, and RSV161/167 (BAR) domain of ACAP4 regulates membrane tubulation. Proc Natl Acad Sci USA 110:11023–11028

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ratushny V, Astsaturov I, Burtness BA et al (2009) Targeting EGFR resistance networks in head and neck cancer. Cell Signal 21:1255–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13:663–673

    Article  CAS  PubMed  Google Scholar 

  7. Fleuren ED, Zhang L, Wu J et al (2016) The kinome ‘at large’ in cancer. Nat Rev Cancer 16:83–98

    Article  CAS  PubMed  Google Scholar 

  8. Deepa SS, Dong LQ (2009) APPL1: role in adiponectin signaling and beyond. Am J Physiol Endocrinol Metab 296:E22–E36

    Article  CAS  PubMed  Google Scholar 

  9. Hosch SE, Olefsky JM, Kim JJ (2006) Applied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab 4:5–6

    Article  CAS  PubMed  Google Scholar 

  10. Combs TP, Marliss EB (2014) Adiponectin signaling in the liver. Rev Endocr Metab Disord 15:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitsuuchi Y, Johnson SW, Sonoda G et al (1999) Identification of a chromosome 3p14. 3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase akt2. Oncogene 18:4891–4898

    Article  CAS  PubMed  Google Scholar 

  12. Heiker JT, Kosel D, Beck-Sickinger AG (2010) Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors. Biol Chem 391:1005–1018

    Article  CAS  PubMed  Google Scholar 

  13. Lin DC, Quevedo C, Brewer NE et al (2006) APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Mol Cell Biol 26:8928–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bae GU, Lee JR, Kim BG et al (2010) Cdo interacts with APPL1 and activates Akt in myoblast differentiation. Mol Biol Cell 21:2399–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nechamen CA, Thomas RM, Dias JA (2007) APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Mol Cell Endocrinol 260–262:93–99

    Article  PubMed  Google Scholar 

  16. Song J, Mu Y, Li C et al (2016) Appl proteins promote TGFBETA-induced nuclear transport of the TGFBETA type i receptor intracellular domain. Oncotarget 7:279–292

    PubMed  Google Scholar 

  17. Flores-Rodriguez N, Kenwright DA, Chung PH et al (2015) ESCRT-0 marks an APPL1-independent transit route for EGFR between the cell surface and the EEA1-positive early endosome. J Cell Sci 128:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miaczynska M, Christoforidis S, Giner A et al (2004) Appl proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116:445–456

    Article  CAS  PubMed  Google Scholar 

  19. Cheng KK, Iglesias MA, Lam KS et al (2009) APPL1 potentiates insulin-mediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice. Cell Metab 9:417–427

    Article  CAS  PubMed  Google Scholar 

  20. Xia P, Zhou J, Song X et al (2014) Aurora A orchestrates entosis by regulating a dynamic MCAK–TIP150 interaction. J Mol Cell Biol 6:240–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kapoor GS, Zhan Y, Johnson GR et al (2004) Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappaB activation through Gab1 in glioblastoma cells. Mol Cell Biol 24:823–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang SJ, Saadi W, Lin F et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300:180–189

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Z, Liu XF, Wu HC et al (2010) Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway. Cancer Sci 101:1454–1462

    Article  CAS  PubMed  Google Scholar 

  24. Xue Y, Zhou F, Zhu M et al (2005) GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 33:W184–W187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Francavilla C, Papetti M, Rigbolt KT et al (2016) Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol 23:608–618

    Article  CAS  PubMed  Google Scholar 

  26. Ruan H, Dong LQ (2016) Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 8:101–109

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ryu J, Galan AK, Xin X et al (2014) APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor. Cell Rep 7:1227–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gant-Branum RL, Broussard JA, Mahsut A et al (2010) Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry. J Proteome Res 9:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mao X, Kikani CK, Riojas RA et al (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8:516–523

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Yao F, Wu R et al (2002) Mediation of the DCC apoptotic signal by DIP13 alpha. J Biol Chem 277:26281–26285

    Article  CAS  PubMed  Google Scholar 

  31. Tan Y, You H, Coffey FJ et al (2010) APPL1 is dispensable for Akt signaling in vivo and mouse t-cell development. Genesis 48:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomas RM, Nechamen CA, Mazurkiewicz JE et al (2011) The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular ca(2+) mobilization. Endocrinology 152:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gan Y, Shi C, Inge L et al (2010) Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 29:4947–4958

    Article  CAS  PubMed  Google Scholar 

  34. Fischer OM, Hart S, Gschwind A et al (2003) EGFR signal transactivation in cancer cells. Biochem Soc Trans 31:1203–1208

    Article  CAS  PubMed  Google Scholar 

  35. Amit M, Na’ara S, Gil Z (2016) Mechanisms of cancer dissemination along nerves. Nat Rev Cancer 16:399–408

    Article  CAS  PubMed  Google Scholar 

  36. Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M et al (2014) Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 6:299–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Xuebiao Yao (University of Science and Technology of China) and Donald L. Hill (University of Alabama at Birmingham) for support. This work is, in whole or in part, supported by the National Natural Science Foundation of China (31501130, 31501095), China Postdoctoral Science Foundation (2014M560517) and Anhui Provincial Natural Science Foundation (1508085SMC213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Liu.

Ethics declarations

Author contributions

J.Z., H.L. and X.L. conceived the project; J.Z., S.Z. and P.H. performed biochemical and cell biological experiments; J.Z., S.Z. and X.L. performed data analyses; J.Z., H.L., P.H., and X.L. wrote and edited the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

SPECIAL TOPIC: Lipid Metabolism and Human Metabolic Disorder.

J. Zhou and H. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1203 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, H., Zhou, S. et al. Adaptor protein APPL1 interacts with EGFR to orchestrate EGF-stimulated signaling. Sci. Bull. 61, 1504–1512 (2016). https://doi.org/10.1007/s11434-016-1157-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1157-0

Keywords

Navigation