Skip to main content

Recent advances in ionic liquid-based electrochemical biosensors

基于离子液体构筑的电化学生物传感器研究进展

Abstract

Ionic liquids (ILs) have been generally described as molten salts which are composed of asymmetric cations and anions. They exist in liquid state below 100 °C. Both ILs and their composite materials have been widely used in various fields. Attributed to the outstanding properties including the thermal and chemical stabilities, the negligible volatility, the high ionic conductivity, the wide electrochemical window, and the easy design in the construction, ILs have been applied in electrochemical applications including the electrocatalysis, the electrosynthesis, the electrodeposition, the electrochamical devices and sensors. In addition to the application in electrochemical sensors, ILs have also been used in biosensors because of their biocompatibiciy. Here, we review the recent developments for the applicaitons of ILs in electrochemical sensors and biosensors, including the corresponding properties of ILs suitable for electrochemical sensors. Electrochemical biosensors constructed by numorous composites are the emphasis in the review.

摘要

离子液体是由不对称的阴离子和阳离子构成的熔融盐,在低于100 °C下它们呈液体状态,离子液体及其构成的复合材料在各个领域中得到了广泛的应用。离子液体本身具有多种优良特性,已经在电化学应用领域得到了广泛的应用,包括电催化、电合成、电沉积以及多种电化学器件及传感器的构筑。基于其良好的生物相容性,离子液体不仅被应用于电化学传感器的构筑,还被应用到电化学生物传感器的构筑。本文综述了离子液体在电化学传感器及电化学生物传感器中应用的研究进展,同时概括了离子液体适用于电化学传感器的优良性能。本文着重概括了由离子液体及其复合材料构筑的电化学生物传感器研究进展。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Reproduced with permission from [32]. Copyright 2015 Wiley-Blackwell

Fig. 3

Reproduced with permission from [59]. Copyright 2015 Elsevier Science Publishing

Fig. 4

Reproduced with permission from [69]. Copyright 2012 Elsevier Science Publishing

Fig. 5

Reproduced with permission from [85]. Copyright 2013 Elsevier Science Publishing

Fig. 6

Reproduced with permission from [97]. Copyright 2014 American Chemical Society

Fig. 7

Reproduced with permission from [98]. Copyright 2014 American Chemical Society

Fig. 8

Reproduced with permission from [128]. Copyright 2016 Elsevier Science Publishing

Fig. 9

Reproduced with permission from [23]. Copyright 2015 Elsevier Science Publishing

References

  1. 1.

    Gabriel S, Weiner J (1888) Ueber einige abkömmlinge des propylamine. J Chem Ber 21:2669–2679

    Article  Google Scholar 

  2. 2.

    Walden P (1914) Molecular weight and electrical conductivity of several fused salts. Bull Acad Imp Sci 1800:405–422

    Google Scholar 

  3. 3.

    Greaves TL, Drummond CJ (2008) Protic ionic liquid: properties and applications. Chem Rev 108:206–237

    Article  Google Scholar 

  4. 4.

    Evans DF, Yamauchi A, Wel GJ et al (1983) Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering. J Phys Chem 87:3537–3541

    Article  Google Scholar 

  5. 5.

    Evans DF, Chen SH, Schriver GW et al (1981) Thermodynamics of solution of nonpolar gases in a fused salt. “Hydrophobic bonding” behavior in a nonaqueous system. J Am Chem Soc 103:481–482

    Article  Google Scholar 

  6. 6.

    Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed 48:3184–3186

    Article  Google Scholar 

  7. 7.

    Chum HL, Koch VR, Miller LL et al (1975) An electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265

    Article  Google Scholar 

  8. 8.

    Robinson J, Osteryoung RA (1979) An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc 101:323–327

    Article  Google Scholar 

  9. 9.

    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965–967

    Article  Google Scholar 

  10. 10.

    Fuller J, Carlin RT, De Long HC et al (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 3:299–300

    Article  Google Scholar 

  11. 11.

    Liu X, Nan Z, Qiu Y et al (2013) Hydrophobic ionic liquid immobizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol. Eletrochim Acta 90:203–209

    Article  Google Scholar 

  12. 12.

    Suarez PAZ, Selbach VM, Dullius JEL et al (1997) Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Eletrochim Acta 42:2533–2535

    Article  Google Scholar 

  13. 13.

    Galiński M, Lewandowski A, Stępniak I et al (2006) Ionic liquids as electrolytes. Eletrochim Acta 51:5567–5580

    Article  Google Scholar 

  14. 14.

    Tsai WY, Lin R, Murali S et al (2013) Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C. Nano Energy 2:403–411

    Article  Google Scholar 

  15. 15.

    Rehman A, Zeng X (2012) Ionic liquids as green solvents and electrolytes for robust chemical sensor development. Acc Chem Res 45:1667–1677

    Article  Google Scholar 

  16. 16.

    Chen H, Wang Y, Liu Y et al (2007) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film. Electrochem Commun 9:469–474

    Article  Google Scholar 

  17. 17.

    Xiong HY, Chen T, Zhang XH et al (2007) High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogen peroxide monitoring. Electrochem Commun 9:2671–2675

    Article  Google Scholar 

  18. 18.

    Sharma A, Rawat K, Solanki PR et al (2015) Electrochemical response of agar ionogels towards glucose detection. Anal Methods 7:5876–5885

    Article  Google Scholar 

  19. 19.

    Wei M, Wang J (2015) A novel acetylcholinesterase biosensor based on ionic liquids–AuNPs–porous carbon composite matrix for detection of organophosphate pesticides. Sens Actuators B 211:290–296

    Article  Google Scholar 

  20. 20.

    Sun JY, Huang KJ, Zhao SF et al (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid–TiO2–graphene nanocomposite film modified electrode. Bioelectrochemistry 82:125–130

    Article  Google Scholar 

  21. 21.

    Sun W, Gong S, Shi F et al (2014) Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film. Mater Sci Eng C 40:235–241

    Article  Google Scholar 

  22. 22.

    Ruan C, Li T, Niu Q et al (2012) Electrochemiscal myoglobin biosensor based on graphene–ionic liquid–chitosan bionanocomposites: direct electrochemistry and elctrocatalysis. Eletrochim Acta 64:183–189

    Article  Google Scholar 

  23. 23.

    Zheng Y, Liu Z, Jing Y et al (2015) An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides. Sens Actuators B 210:389–397

    Article  Google Scholar 

  24. 24.

    Hu C, Bai X, Wang Y et al (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750

    Article  Google Scholar 

  25. 25.

    Lee J, Plessis GD, Arrigan DWM et al (2015) Towards improving the robustness of electrochemical gas sensors; impact of PMMA addition on the sensing of oxygen in an ionic liquid. Anal Methods 7:7327–7335

    Article  Google Scholar 

  26. 26.

    Liu N, Ma Z (2014) Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens Bioelectron 51:184–190

    Article  Google Scholar 

  27. 27.

    Pahlavan A, Gupta VK, Sanati AL et al (2014) ZnO/CNTs nanocomposite/ionic liquid carbon paste electrode for determination of noradrenaline in human samples. Eletrochim Acta 123:456–462

    Article  Google Scholar 

  28. 28.

    Zhu X, Niu X, Zhao H et al (2014) Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sens Actuators B 195:274–280

    Article  Google Scholar 

  29. 29.

    Zhao L, Zhao F, Zeng B (2013) Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sens Actuators B 176:818–824

    Article  Google Scholar 

  30. 30.

    Kuberský P, Syrový T, Hamáček A et al (2015) Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens Actuators B 209:1084–1090

    Article  Google Scholar 

  31. 31.

    Kuberský P, Altšmíd J, Hamáček A et al (2015) An electrochemical NO2 sensor based on ionic liquid: influence of the morphology of the polymer electrolyte on sensor sensitivity. Sensor 15:28421–28434

    Article  Google Scholar 

  32. 32.

    Willa C, Yuan J, Niederberger M et al (2015) When nanoparticles meet poly(ionic liquid)s: chemoresistive CO2 sensing at room temperature. Adv Funct Mater 25:2537–2542

    Article  Google Scholar 

  33. 33.

    Behera K, Pandey S, Kadyan A et al (2015) Ionic liquid-based optical and electrochemical carbon dioxide sensors. Sensors 15:30487–30503

    Article  Google Scholar 

  34. 34.

    Zhang J, Jia C, Dong H et al (2013) A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture. Ind Eng Chem Res 52:5835–5841

    Article  Google Scholar 

  35. 35.

    Toniolo R, Dossi N, Pizzariello A et al (2012) An oxygen amperometric gas sensor based on its electrocatalytic reduction in room temperature ionic liquids. J Electroanal Chem 670:23–29

    Article  Google Scholar 

  36. 36.

    Baltes N, Beyle F, Freiner S et al (2013) Trace detection of oxygen-ionic liquids in gas sensor design. Talanta 116:474–481

    Article  Google Scholar 

  37. 37.

    Li P, Compton RG (2015) Electrochemical high concentration oxygen sensing using a phosphonium cation based room temperature ionic liquid: analytical studies. Electroanalysis 27:1550–1555

    Article  Google Scholar 

  38. 38.

    Chen L, Zhang Y, Ren S et al (2013) An ionic liquid-mediated electrochemiluminescent sensor for the detection of sulfur dioxide at the ppb level. Analyst 138:7006–7011

    Article  Google Scholar 

  39. 39.

    Wang Z, Guo M, Mu X et al (2016) Highly sensitive capacitive gas sensing at ionic liquid-electrode interfaces. Anal Chem 88:1959–1964

    Article  Google Scholar 

  40. 40.

    Murugappan K, Silvester DS (2015) Sensors for highly toxic gases: methylamine and hydrogen chloride detection at low concentrations in an ionic liquid on Pt screen printed electrodes. Sensors 15:26866–26876

    Article  Google Scholar 

  41. 41.

    Rehman A, Zeng X (2015) Methods and approaches of utilizing ionic liquids as gas sensing materials. RSC Adv 5:58371–58392

    Article  Google Scholar 

  42. 42.

    Gebicki J, Kloskowski A, Chrzamowski W et al (2016) Application of ionic liquids in amperometric gas sensors. Crit Rev Anal Chem 46:122–138

    Article  Google Scholar 

  43. 43.

    Ensafi AA, Bahrami H, Rezaei B et al (2013) Application of ionic liquid–TiO2 nanoparticle modified carbon paste electrode for the vlotammetric determination of benserazide in biological samples. Mater Sci Eng C 33:831–835

    Article  Google Scholar 

  44. 44.

    Elyasi M, Khalilzadeh MA, Karimi-Maleh H et al (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food sample. Food Chem 141:4311–4317

    Article  Google Scholar 

  45. 45.

    Gupta VK, Sadeghi R, Karimi F et al (2013) A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave volrtammetric determination of droxidopa in pharmaceutical and urine samples. Sens Actuators B 186:603–609

    Article  Google Scholar 

  46. 46.

    Chen X, Ren T, Ma M et al (2013) Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode. Eletrochim Acta 111:49–56

    Article  Google Scholar 

  47. 47.

    Yu X, Chen Y, Chang L et al (2013) β-Cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sens Actuators B 186:648–656

    Article  Google Scholar 

  48. 48.

    Zhang Q, Pan D, Zhang H et al (2014) Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol. Eletrochim Acta 133:23–29

    Article  Google Scholar 

  49. 49.

    Karimi-Maleh H, Sanati AL, Gupta VK et al (2014) A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH). Sens Actuators B 204:647–654

    Article  Google Scholar 

  50. 50.

    Bahrami A, Besharati-Seidani A, Abbaspour A et al (2015) A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads. Mater Sci Eng C 48:205–212

    Article  Google Scholar 

  51. 51.

    Ismaiel AA, Aroua MK, Yusoff R (2014) Cadmium(II)-selective electrode based on palm shell activated carbon modified with task-specific ionic liquid: kinetics and analytical applications. Int J Environ Sci Technol 11:1115–1126

    Article  Google Scholar 

  52. 52.

    Zhuo K, Wei Y, Ma J et al (2013) Response of PVC membrane ion-selective electrodes to alkylmethylimidazolium ionic liquid cations. Sens Actuators B 186:461–465

    Article  Google Scholar 

  53. 53.

    Wardak C, Lenik J (2013) Application of ionic liquid to the construction of Cu(II) ion-selective electrode with solid contact. Sens Actuators B 189:52–59

    Article  Google Scholar 

  54. 54.

    Rzhevskaia AV, Shvedene NV, Pletnev IV (2014) Solidified ionic liquid as crystalline sensing element of the bromide selective electrode. Sens Actuators B 193:563–567

    Article  Google Scholar 

  55. 55.

    Wardak C (2015) Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes. Sens Actuators B 209:131–137

    Article  Google Scholar 

  56. 56.

    Georgakilas V, Perman JA, Tucek J et al (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon nots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  Google Scholar 

  57. 57.

    Baptista FR, Belhout SA, Giordani S et al (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44:4433–4453

    Article  Google Scholar 

  58. 58.

    Fang Y, Wang E (2013) Electrochemical biosensors on platforms of graphene. Chem Commun 49:9526–9539

    Article  Google Scholar 

  59. 59.

    Abo-Hamad A, AlSaadi MA, Hayyan M et al (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Eletrochim Acta 193:321–343

    Article  Google Scholar 

  60. 60.

    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  Google Scholar 

  61. 61.

    Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  Google Scholar 

  62. 62.

    Li H, Chen L, Wu H et al (2014) Ionic liquid-functionalized fluorescent carbon nanodots and their applications in electroatalysis, biosensing, and cell imaging. Langmuir 30:15016–15021

    Article  Google Scholar 

  63. 63.

    Hong Z, Zhou L, Li J et al (2013) A sensor based on graphitic mesoporous carbon/ionic liquids composite film for simultaneous determination of hydroquinone and catechol. Eletrochim Acta 109:671–677

    Article  Google Scholar 

  64. 64.

    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  65. 65.

    Li R, Liu C, Ma M et al (2013) Synthesis of 1,3-di(4-amino-1-pyridinium)propane ionic liquid functionalized graphene nanosheets and its application in direct electrochemistry of hemoglobin. Eletrochim Acta 95:71–79

    Article  Google Scholar 

  66. 66.

    Sun W, Hou F, Gong S et al (2015) Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sens Actuators B 219:331–337

    Article  Google Scholar 

  67. 67.

    Li G, Li T, Deng Y et al (2013) Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor. J Solid State Electrochem 17:2333–2340

    Article  Google Scholar 

  68. 68.

    Sun W, Gong S, Deng Y et al (2014) Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor. Thin Solid Films 562:653–658

    Article  Google Scholar 

  69. 69.

    Sun W, Qi X, Zhang Y et al (2012) Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Eletrochim Acta 85:145–151

    Article  Google Scholar 

  70. 70.

    Sun W, Zhang Y, Hu A et al (2013) Eletrochemical DNA biosensor based on partially reduced graphene oxide modified carbon ionic liquid electrode for the detection of transgenic soybean A2704-12 gene sequence. Electroanalysis 25:1417–1424

    Article  Google Scholar 

  71. 71.

    Ping J, Wang Y, Fan K et al (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209

    Article  Google Scholar 

  72. 72.

    Chen H, Zhao G (2012) Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J Solid State Electrochem 16:3289–3297

    Article  Google Scholar 

  73. 73.

    Sun W, Liu J, Ju X et al (2013) Highly sensitive electrochemical detection of adenine on a graphene-modified carbon ionic liquid electrode. Ionics 19:657–663

    Article  Google Scholar 

  74. 74.

    Gholivand MB, Khodadadian M (2014) Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens Bioelectron 53:472–478

    Article  Google Scholar 

  75. 75.

    Wang C, Xu P, Zhuo K (2014) Ionic liquid functionalized graphene-based electrochemical biosensor for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid. Electroanalysis 26:191–198

    Article  Google Scholar 

  76. 76.

    Lu X, Wang X, Jin J et al (2014) Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Biosens Bioelectron 62:134–139

    Article  Google Scholar 

  77. 77.

    Ojeda I, Barrejón M, Arellano LM et al (2015) Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: application to the determination of adiponectin cytokine in serum. Biosens Bioelectron 74:24–29

    Article  Google Scholar 

  78. 78.

    Govindhan M, Lafleur T, Adhikari B-R et al (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 27:902–909

    Article  Google Scholar 

  79. 79.

    Sun Y, He K, Zhang Z et al (2015) Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens Bioelectron 68:358–364

    Article  Google Scholar 

  80. 80.

    Primo EN, Gutierrez FA, Rubianes MD et al (2015) Bamboo-like multiwalled carbon nanotubes dispersed in double stranded calf-thymus DNA as a new analytical platform for building layer-by-layer based biosensors. Eletrochim Acta 182:391–397

    Article  Google Scholar 

  81. 81.

    Salimi A, Pourbahram B, Mansouri-Majd S et al (2015) Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Eletrochim Acta 156:207–215

    Article  Google Scholar 

  82. 82.

    Qiu K, Chen X, Ci S et al (2016) Facile preparation of nickel nanoparticle-modified carbon nanotubes with application as a nonenzymatic electrochemical glucose sensor. Anal Lett 49:568–578

    Article  Google Scholar 

  83. 83.

    Fukushima T, Kosaka A, Ishimura Y et al (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  Google Scholar 

  84. 84.

    Keihan AH, Sajjadi S, Sheibani N et al (2014) A highly sensitive choline biosensor based on bamboo-like multiwall carbon nanotubes/ionic liquid/Prussian blue nanocomposite. Sens Actuators B 04:694–703

    Article  Google Scholar 

  85. 85.

    Khezrian S, Salimi A, Teymourian H et al (2013) Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens Bioelectron 43:218–225

    Article  Google Scholar 

  86. 86.

    Salimi A, Kavosi B, Fathi F et al (2013) Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosens Bioelectron 42:439–446

    Article  Google Scholar 

  87. 87.

    Mundaca RA, Moreno-Guzmán M, Eguílaz M et al (2012) Enzyme biosensor for androsterone based on 3α-hydroxysteroid dehydrogenase immobilized onto a carbon nanotubes/ionic liquid/NAD+ composite electrode. Talanta 99:697–702

    Article  Google Scholar 

  88. 88.

    Vicentini FC, Janegitz BC, Brett CMA et al (2013) Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens Actuators B 188:1101–1108

    Article  Google Scholar 

  89. 89.

    Babaei A, Garrett DJ, Downard AJ (2012) Electrochemical investigations on a third generation biosensor for determination of hydrogen peroxide based on immobilization of myoglobin on a novel platinum nanoparticle/carbon nanotube/ionic liquid/nafion composite. Int J Electrochem Sci 7:3141–3154

    Google Scholar 

  90. 90.

    Teymourian H, Salimi A, Hallaj R (2012) Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing. Talanta 90:91–98

    Article  Google Scholar 

  91. 91.

    Mazloum-Arfakani M, Khoshroo A (2013) An electrochemical study of benzofuran derivative in modified electrode-based CNT/ionic liquids for determining nanomolar concentrations of hydrazine. Eletrochim Acta 103:77–84

    Article  Google Scholar 

  92. 92.

    Prakash S, Chakrabarty T, Singh AK et al (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53

    Article  Google Scholar 

  93. 93.

    Putzbach W, Robkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:4811–4840

    Article  Google Scholar 

  94. 94.

    Chaudhary GR, Bansal S, Saharan P et al (2013) Applications of surface modified ionic liquid/nanomaterial composite in electrochemical sensors and biosensors. BioNanoSci 3:241–253

    Article  Google Scholar 

  95. 95.

    Saei AA, Najafi-Marandi P, Abhari A et al (2013) Electrochemical biosensors for glucose based on metal nanoparticles. TrAC Trends Anal Chem 42:216–227

    Article  Google Scholar 

  96. 96.

    Jia X, Dong S, Wang E (2016) Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosens Bioelectron 76:80–90

    Article  Google Scholar 

  97. 97.

    Kwak K, Kumar SS, Pyo K et al (2014) Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors. ACS Nano 8:671–679

    Article  Google Scholar 

  98. 98.

    Li R, Wu K, Liu C, Huang Y et al (2014) 4-Amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid functionalized gold nanoparticles for IgG immunosensing enhancement. Anal Chem 86:5300–5307

    Article  Google Scholar 

  99. 99.

    Liu N, Chen X, Ma Z (2013) Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 48:33–38

    Article  Google Scholar 

  100. 100.

    Kavosi B, Salimi A, Hallaj R et al (2014) A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens Bioelectron 52:20–28

    Article  Google Scholar 

  101. 101.

    Wang L, Wen W, Xiong H et al (2013) A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle–chitosan–ionic liquid biocomposite film. Eletrochim Acta 758:66–71

    Article  Google Scholar 

  102. 102.

    Dong M, Nan Z, Liu P et al (2014) Two-phase synthesis of hydrophobic ionic liquid-capped gold nanoparticles and their application for sensing cholesterol. Eletrochim Acta 132:465–471

    Article  Google Scholar 

  103. 103.

    Liu X, Feng H, Zhao R et al (2012) A novel approach to construct a horseradish peroxidase|hydrophilic ionic liquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide. Biosens Bioelectron 31:101–104

    Article  Google Scholar 

  104. 104.

    Yu S, Cao X, Yu M (2012) Electrochemical immunoassay based on gold nanoparticles and reduced graphene oxide functionalized carbon ionic liquid electrode. Microchem J 103:125–130

    Article  Google Scholar 

  105. 105.

    Roushani M, Valipour A (2016) Using electrochemical oxidation of rutin in modeling a novel and sensitive immunosensor based on Pt nanoparticle and graphene–ionic liquid–chitosan nanocomposite to detect human chorionic gonadotropin. Sens Actuators B 222:1103–1111

    Article  Google Scholar 

  106. 106.

    Siddiquee S, Yusof NA, Salleh AB et al (2012) Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO nanoparticles/chitosan/gold electrode. J Solid State Electrochem 16:273–282

    Article  Google Scholar 

  107. 107.

    Zhu Q, Gao F, Yang Y et al (2015) Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sens Actuators B 207:819–826

    Article  Google Scholar 

  108. 108.

    Saadati S, Salimi A, Hallaj R et al (2014) Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic liquid/titanium-nitride nanoparticles: application to nitrite detection. Sens Actuators B 191:625–633

    Article  Google Scholar 

  109. 109.

    Dong S, Li N, Huang T et al (2012) Myoglobin immobilized on LaF3 doped CeO2 and ionic liquid composite film for nitrite biosensor. Sens Actuators B 173:704–709

    Article  Google Scholar 

  110. 110.

    Fouladgar M, Karimi-Maleh H, Gupta VK (2015) Highly sensitive voltmmetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J Mol Liq 208:78–83

    Article  Google Scholar 

  111. 111.

    Sun W, Sun Z, Zhang L et al (2013) Application of Fe3O4 mesoporous sphere modified carbon ionic liquid electrode as electrochemical hemoglobin biosensor. Colloids Surf B 101:177–182

    Article  Google Scholar 

  112. 112.

    Pahlavan A, Karimi-Maleh H, Karimi F et al (2014) Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH. Mater Sci Eng C 45:210–215

    Article  Google Scholar 

  113. 113.

    Sadeghi R, Karimi-Maleh H, Bahari A et al (2013) A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys Chem Liq 51:704–714

    Article  Google Scholar 

  114. 114.

    Ma Y, Zhan G, Ma M et al (2012) Direct electron transfer of hemoglobin in a biocompatible electrochemical system based on zirconium dioxide nanotubes and ionic liquid. Bioelectrochemisty 84:6–10

    Article  Google Scholar 

  115. 115.

    Sun W, Wang X, Sun X et al (2013) Simultaneous electrochemical determination of guanosine and adenosine with graphene–ZrO2 nanocomposite modified carbon ionic liquid electrode. Biosens Bioelectron 44:146–151

    Article  Google Scholar 

  116. 116.

    Lou J, Lu Y, Zhan T et al (2014) Application of an ionic liquid-functionalized Mg2Al layered double hydroxide for the electrochemical myoglobin biosensor. Ionics 20:1471–1479

    Article  Google Scholar 

  117. 117.

    Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925

    Article  Google Scholar 

  118. 118.

    Wang X, Hao J (2015) Ionogels of sugar surfactant in ethylammonium nitrate: phase transition from closely packed bilayers to right-handed twisted ribbons. J Phys Chem B 119:13321–13329

    Article  Google Scholar 

  119. 119.

    Wang X, Yang Q, Cao Y et al (2016) Ionogels of a sugar surfactant in ionic liquids. Chem Asian J 11:722–729

    Article  Google Scholar 

  120. 120.

    Viau L, Tourné-Péteilh C, Devoisselle JM et al (2010) Ionogels as drug delivery system: one-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid. Chem Commun 46:228–230

    Article  Google Scholar 

  121. 121.

    Dutta S, Das D, Dasgupta A et al (2010) Amino acid based low-molecular-weight ionogels as efficient dye-adsorbing agents and templates for the synthesis of TiO2 nanoparticles. Chem Eur J 16:1493–1505

    Article  Google Scholar 

  122. 122.

    Voss BA, Bara JE, Gin DL et al (2009) Physically gelled ionic liquids: solid membrane materials with liquidlike CO2 gas transport. Chem Mater 21:3027–3029

    Article  Google Scholar 

  123. 123.

    Wang S, Hsia B, Carraro C et al (2014) High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J Mater Chem A 2:7997–8002

    Article  Google Scholar 

  124. 124.

    Moon HC, Lodge TP, Frisbie CD (2014) Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J Am Chem Soc 136:3705–3712

    Article  Google Scholar 

  125. 125.

    Chen B, Lu JJ, Yang CH et al (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces 6:7840–7845

    Article  Google Scholar 

  126. 126.

    Zhu X, Zhang H, Wu J (2014) Chemiresistive ionogel sensor array for the detection and discrimination of volatile organic vapor. Sens Actuators B 202:105–113

    Article  Google Scholar 

  127. 127.

    Carvalho T, Vidinaha P, Bieira BR et al (2014) Ion jelly: a novel sensing material for gas sensors and electronic noses. J Mater Chem C 2:696–700

    Article  Google Scholar 

  128. 128.

    He W, Sun Y, Xi J et al (2016) Printing graphene–carbon nanotube–ionic liquid gel on graphene paper: towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Anal Chim Acta 903:61–68

    Article  Google Scholar 

  129. 129.

    Nguyen CT, Zhu Y, Chen X et al (2015) Nanostructured ion gels from liquid crystalline block copolymers and gold nanoparticles in ionic liquids: manifestation of mechanical and electrochemical properties. J Mater Chem C 3:399–408

    Article  Google Scholar 

  130. 130.

    Zamfir L-G, Rotariu L, Bala C (2013) Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels. Biosens Bioelectron 46:61–67

    Article  Google Scholar 

  131. 131.

    Chen X, Zhu J, Tian R et al (2012) Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol–gel organic–inorganic composite. Sens Actuators B 163:272–280

    Article  Google Scholar 

  132. 132.

    Zhai X, Li Y, Liu G et al (2013) Electropolymerized toluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH. Sens Actuators B 178:169–175

    Article  Google Scholar 

  133. 133.

    Valentini F, Roscioli D, Carbone M et al (2015) Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification. Sens Actuators B 212:248–255

    Article  Google Scholar 

  134. 134.

    Peng L, Dong S, Li N et al (2015) Construction of a biocompatible system of hemoglobin based on AuNPs-carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuators B 210:418–424

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21420102006, 21273134).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hao, J. Recent advances in ionic liquid-based electrochemical biosensors. Sci. Bull. 61, 1281–1295 (2016). https://doi.org/10.1007/s11434-016-1151-6

Download citation

Keywords

  • Ionic liquids
  • Electrochemical sensors
  • Biosensors

关键词

  • 离子液体
  • 电化学传感器
  • 电化学生物传感器