A new ferromagnetic superconductor: \(\hbox {CsEuFe}_4\hbox {As}_4\)

一种新的铁磁超导体: CsEuFe4As4

Abstract

Superconductivity (SC) and ferromagnetism (FM) are in general antagonistic, which makes their coexistence very rare. Following our recent discovery of robust coexistence of SC and FM in \(\hbox {RbEuFe}_4\hbox {As}_4\) (Liu et al. in Phys Rev B 93:214503, 2016), here we report another example of such a coexistence in its sister compound \(\hbox {CsEuFe}_4\hbox {As}_4\), synthesized for the first time. The new material exhibits bulk SC at 35.2 K and \(\hbox {Eu}^{2+}\)-spin ferromagnetic ordering at 15.5 K, demonstrating that it is a new robust ferromagnetic superconductor.

摘要

超导电性与铁磁性是两种相互对立的物理现象: 超导体具有完全抗磁性, 而铁磁体则产生自发磁化, 两者很难共存。本文报道一种新型磁性超导体 CsEuFe4As4, 其晶体结构由FeAs超导层、非磁 Cs 单原子层以及磁性 Eu 单原子层沿 c 轴交替排列。实验测量表明, 该材料在35.2K以下显示出大块超导电性。在15.5 K以下, Eu2+ 离子自旋呈铁磁排列, 超导与之共存。因此, CsEuFe4As4 是一种罕见的超导与铁磁共存的铁磁铁基超导体。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ginzburg VL (1957) Ferromagnetic superconductors. Sov Phys JETP-USSR 4:153–160

    Google Scholar 

  2. 2.

    Bulaevskii LN, Buzdin AI, Kulic ML et al (1985) Coexistence of superconductivity and magnetism—theoretical predictions and experimental results. Adv Phys 34:175–261

    Article  Google Scholar 

  3. 3.

    Fertig WA, Johnston DC, DeLong LE et al (1977) Destruction of superconductivity at the onset of long-range magnetic order in the compound \({\rm Er}{\rm Rh}_{4}{\rm B}_{4}\). Phys Rev Lett 38:987–990

    Article  Google Scholar 

  4. 4.

    Wolowiec CT, White BD, Maple MP (2015) Conventional magnetic superconductors. Physica C 514:113–129

    Article  Google Scholar 

  5. 5.

    Huxley DA (2015) Ferromagnetic superconductors. Physica C 514:368–377

    Article  Google Scholar 

  6. 6.

    Lorenz B, Chu CW (2005) Superconducting ferromagnets: ferromagnetic domains in the superconducting state. Nat Mater 4:516–517

    Article  Google Scholar 

  7. 7.

    Anderson PW, Suhl H (1959) Spin alignment in the superconducting state. Phys Rev 116:898–900

    Article  Google Scholar 

  8. 8.

    Ren Z, Tao Q, Jiang S et al (2009) Superconductivity induced by phosphorus doping and its coexistence with ferromagnetism in \({\rm Eu}{\rm Fe}_{2}({\rm As}_{0.7}{\rm P}_{0.3})_{2}\). Phys Rev Lett 102:137002

    Article  Google Scholar 

  9. 9.

    Cao GH, Xu SG, Ren Z et al (2011) Superconductivity and ferromagnetism in \({\rm Eu}{\rm Fe}_{2}({\rm As}_{1-x}{\rm P}_{x})_{2}\). J Phys Condens Matter 23:464204

    Article  Google Scholar 

  10. 10.

    Nandi S, Jin WT, Xiao Y et al (2014) Coexistence of superconductivity and ferromagnetism in P-doped \({\rm Eu}{\rm Fe}_{2}{\rm As}_{2}\). Phys Rev B 89:014512

    Article  Google Scholar 

  11. 11.

    Nandi S, Jin WT, Xiao Y et al (2014) Magnetic structure of the \({{\rm Eu}}^{2+}\) moments in superconducting \({\rm Eu}{\rm Fe}_{2}{({{\rm As}}_{1-x}{{\rm P}}_{x})}_{2}\) with \(x=0.19\). Phys Rev B 90:094407

    Article  Google Scholar 

  12. 12.

    Jiang S, Xing H, Xuan GF et al (2009) Superconductivity and local-moment magnetism in \({\rm Eu}({\rm Fe}_{0.89}{\rm Co}_{0.11})_{2}{\rm As}_{2}\). Phys Rev B 80:184514

    Article  Google Scholar 

  13. 13.

    Jin WT, Nandi S, Xiao Y et al (2013) Magnetic structure of superconducting \({\rm Eu}({\rm Fe}_{0.82}{\rm Co}_{0.18})_{2}{\rm As}_{2}\) as revealed by single-crystal neutron diffraction. Phys Rev B 88:214516

    Article  Google Scholar 

  14. 14.

    Jiao WH, Tao Q, Bao JK et al (2011) Anisotropic superconductivity in \({\rm Eu}({\rm Fe}_{0.75}{\rm Ru}_{0.25})_{2}{\rm As}_{2}\) ferromagnetic superconductor. Europhys Lett 95:67007

    Article  Google Scholar 

  15. 15.

    Jiao WH, Zhai HF, Bao JK et al (2013) Anomalous critical fields and the absence of Meissner state in \({\rm Eu}({\rm Fe}_{0.88}{\rm Ir}_{0.12})_{2}{\rm As}_{2}\) crystals. New J Phys 15:113002

    Article  Google Scholar 

  16. 16.

    Jin WT, Li W, Su Y et al (2015) Magnetic ground state of superconducting \({\rm Eu}({\rm Fe}_{0.88}{\rm Ir}_{0.12})_{2}{\rm As}_{2}\): a combined neutron diffraction and first-principles calculation study. Phys Rev B 91:064506

    Article  Google Scholar 

  17. 17.

    Nowik I, Felner I, Ren Z et al (2011) Coexistence of ferromagnetism and superconductivity: magnetization and Mössbauer studies of \({\rm Eu}{\rm Fe}_{2}({\rm As}_{1-x}{\rm P}_{x})_{2}\). J Phys Conden Matt 23:065701

    Article  Google Scholar 

  18. 18.

    Jeevan HS, Kasinathan D, Rosner H et al (2011) Interplay of antiferromagnetism, ferromagnetism, and superconductivity in \({\rm Eu}{\rm Fe}_{2}({\rm As}_{1-x}{\rm P}_{x})_{2}\) single crystals. Phys Rev B 83:054511

    Article  Google Scholar 

  19. 19.

    Zapf S, Jeevan HS, Ivek T et al (2013) \({\rm Eu}{\rm Fe}_{2}({\rm As}_{1-x}{\rm P}_{x})_{2}\): reentrant spin glass and superconductivity. Phys Rev Lett 110:237002

    Article  Google Scholar 

  20. 20.

    Jiang H, Sun YL, Xu ZA et al (2013) Crystal chemistry and structural design of iron-based superconductors. Chin Phys B 22:087410

    Article  Google Scholar 

  21. 21.

    Iyo A, Kawashima K, Kinjo T et al (2016) New-structure-type Fe-based superconductors: \({\rm Ca}{\rm A}{\rm Fe}_{4}{\rm As}_{4} ({\rm A} = {\rm K},\,{\rm Rb},\,{\rm Cs})\) and \({\rm Sr}{\rm A}{\rm Fe}_{4}{\rm As}_{4} ({\rm A} = {\rm Rb}, {\rm Cs})\). J Am Chem Soc 138:3410–3415

    Article  Google Scholar 

  22. 22.

    Liu Y, Liu YB, Tang ZT et al (2016) Superconductivity and ferromagnetism in hole-doped \({{\rm RbEuFe}}_{4}{{\rm As}}_{4}\). Phys Rev B 93:214503

    Article  Google Scholar 

  23. 23.

    Izumi F, Momma K (2007) Three-dimensional visualization in powder diffraction. Book section 130. Solid state phenomena. Elsevier, London

    Google Scholar 

  24. 24.

    Sample HH, Bruno WJ, Sample SB et al (1987) Reverse-field reciprocity for conducting specimens in magnetic fields. J Appl Phys 61:1079–1084

    Article  Google Scholar 

  25. 25.

    Ren Z, Zhu ZW, Jiang S et al (2008) Antiferromagnetic transition in \({\rm Eu}{\rm Fe}_{2}{\rm As}_{2}\): a possible parent compound for superconductors. Phys Rev B 78:052501

    Article  Google Scholar 

  26. 26.

    Noack M, Schuster HU (1994) New ternary compounds of cesium and elements of the 8th transition metal group and the 5th main group. Z Anorg Allg Chem 620:1777–1780

    Article  Google Scholar 

  27. 27.

    Rotter M, Tegel M, Johrendt D (2008) Superconductivity at 38 K in the iron arsenide \(({\rm Ba}_{1-x}{\rm K}_{x}){\rm Fe}_{2}{\rm As}_{2}\). Phys Rev Lett 101:107006

    Article  Google Scholar 

  28. 28.

    Sasmal K, Lv B, Lorenz B et al (2008) Superconducting \({\rm Fe}\)-based compounds \(({\rm A}_{1-x}{\rm Sr}_{x}){\rm Fe}_{2}{\rm As}_{2}\) with \({\rm A}={\rm K}\) and \({\rm Cs}\) with transition temperatures up to 37 \({\rm K}\). Phys Rev Lett 101:107007

    Article  Google Scholar 

  29. 29.

    Shen B, Yang H, Wang ZS et al (2011) Transport properties and asymmetric scattering in \({\rm Ba}_{1-x}{\rm K}{}_{x}{\rm Fe}_{2}{\rm As}_{2}\) single crystals. Phys Rev B 84:184512

    Article  Google Scholar 

  30. 30.

    Wu YP, Zhao D, Wang AF et al (2016) Emergent kondo lattice behavior in iron-based superconductors \({\rm A}{\rm Fe}_{2}{\rm As}_{2}\) (\({\rm A}={\rm K}, {\rm Rb}, {\rm Cs}\)). Phys Rev Lett 116:147001

    Article  Google Scholar 

  31. 31.

    Chen GF, Li Z, Dong J et al (2008) Transport and anisotropy in single-crystalline \({\rm Sr}{\rm Fe}_{2}{\rm As}_{2}\) and \({\rm A}_{0.6}{\rm K}_{0.4}{\rm Fe}_{2}{\rm As}_{2}\) (\({\rm A}={\rm Sr}, {\rm Ba}\)) superconductors. Phys Rev B 78:224512

    Article  Google Scholar 

  32. 32.

    Meier WR, Kong T, Kaluarachchi US et al (2016) Anisotropic thermodynamic and transport properties of single crystalline \({\rm Ca}{\rm K}{\rm Fe}_{4}{\rm As}_{4}\). arxiv:1605.05617

  33. 33.

    Bud’ko SL, Ni N, Canfield PC (2009) Jump in specific heat at the superconducting transition temperature in \({\rm Ba}({\rm Fe}_{1-x}{\rm Co}_{x})_{2}{\rm As}_{2}\) and \({\rm Ba}({\rm Fe}_{1-x}{\rm Ni}_{x})_{2}{\rm As}_{2}\) single crystals. Phys Rev B 79:220516

    Article  Google Scholar 

  34. 34.

    Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53:51–81

    Article  Google Scholar 

  35. 35.

    Jiang S, Luo YK, Ren Z et al (2009) Metamagnetic transition in \({\rm EuFe}_{2}{\rm As}_{2}\) single crystals. New J Phys 11:025007

    Article  Google Scholar 

  36. 36.

    Xiao Y, Su Y, Meven M et al (2009) Magnetic structure of \({\rm EuFe}_{2}{\rm As}_{2}\) determined by single-crystal neutron diffraction. Phys Rev B 80:174424

    Article  Google Scholar 

  37. 37.

    Fulde P, Ferrell RA (1964) Superconductivity in a strong spin-exchange field. Phys Rev 135:A550–A563

    Article  Google Scholar 

  38. 38.

    Larkin AI, Ovchinni Y (1965) Inhomogeneous state of superconductors. Sov Phys JETP-USSR 20:762

    Google Scholar 

  39. 39.

    Greenside HS, Blount EI, Varma CM (1981) Possible coexisting superconducting and magnetic states. Phys Rev Lett 46:49–53

    Article  Google Scholar 

  40. 40.

    Tachiki M, Matsumoto H, Koyama T (1980) Self-induced vortices in magnetic superconductors. Solid State Commun 34:19–23

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11474252, 90922002 and 11190023) and the National Basic Research Program of China (2012CB821404).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guang-Han Cao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, YB., Chen, Q. et al. A new ferromagnetic superconductor: \(\hbox {CsEuFe}_4\hbox {As}_4\) . Sci. Bull. 61, 1213–1220 (2016). https://doi.org/10.1007/s11434-016-1139-2

Download citation

Keywords

  • Superconductivity
  • Ferromagnetism
  • Iron-based superconductors