Science Bulletin

, Volume 61, Issue 14, pp 1097–1106 | Cite as

Magnetic lattices for ultracold atoms and degenerate quantum gases

  • Yibo Wang
  • Prince Surendran
  • Smitha Jose
  • Tien Tran
  • Ivan Herrera
  • Shannon Whitlock
  • Russell McLean
  • Andrei Sidorov
  • Peter Hannaford
Review Physics & Astronomy

Abstract

We review recent developments in the use of magnetic lattices as a complementary tool to optical lattices for trapping periodic arrays of ultracold atoms and degenerate quantum gases. Recent advances include the realisation of Bose–Einstein condensation in multiple sites of a magnetic lattice of one-dimensional microtraps, the trapping of ultracold atoms in square and triangular magnetic lattices, and the fabrication of magnetic lattice structures with sub-micron period suitable for quantum tunnelling experiments. Finally, we describe a proposal to utilise long-range interacting Rydberg atoms in a large spacing magnetic lattice to create interactions between atoms on neighbouring sites.

Keywords

Magnetic lattices Ultracold atoms Degenerate quantum gases Quantum simulation 

References

  1. 1.
    Chu S (1998) Nobel lecture: the manipulation of neutral particles. Rev Mod Phys 70:685–706CrossRefGoogle Scholar
  2. 2.
    Cohen-Tannoudji CN (1998) Nobel lecture: manipulating atoms with photons. Rev Mod Phys 70:707–719CrossRefGoogle Scholar
  3. 3.
    Phillips WD (1998) Nobel lecture: laser cooling and trapping of neutral atoms. Rev Mod Phys 70:721–741CrossRefGoogle Scholar
  4. 4.
    Morsch O, Oberthaler M (2006) Dynamics of Bose–Einstein condensates in optical lattices. Rev Mod Phys 78:179–215CrossRefGoogle Scholar
  5. 5.
    Lewenstein M, Sanpera A, Ahufinger V et al (2007) Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv Phys 56:243–379CrossRefGoogle Scholar
  6. 6.
    Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964CrossRefGoogle Scholar
  7. 7.
    Takamoto M, Hong FL, Higashi R et al (2005) An optical lattice clock. Nature 435:321–324CrossRefGoogle Scholar
  8. 8.
    Bakr WS, Gillen JI, Peng A et al (2009) A quantum gas microscope for detecting single atoms in a Bose–Hubbard regime optical lattice. Nature 462:74–77CrossRefGoogle Scholar
  9. 9.
    Calarco T, Hinds EA, Jaksch D et al (2000) Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys Rev A 61:022304CrossRefGoogle Scholar
  10. 10.
    Monroe C (2002) Quantum information processing with atoms and photons. Nature 416:238–246CrossRefGoogle Scholar
  11. 11.
    Greiner M, Mandel O, Esslinger T et al (2002) Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415:39–44CrossRefGoogle Scholar
  12. 12.
    Uehlinger T, Jotzu G, Messer M et al (2013) Artificial graphene with tunable interactions. Phys Rev Lett 111:185307CrossRefGoogle Scholar
  13. 13.
    Simon J, Bakr WS, Ma R et al (2011) Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472:307–312CrossRefGoogle Scholar
  14. 14.
    Hart RA, Duarte PM, Yang TL et al (2015) Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519:211–214CrossRefGoogle Scholar
  15. 15.
    Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903CrossRefGoogle Scholar
  16. 16.
    Martiyanov K, Makhalov V, Turlapov A (2010) Observation of a two-dimensional Fermi gas of atoms. Phys Rev Lett 105:030404CrossRefGoogle Scholar
  17. 17.
    Billy J, Josse V, Zuo Z et al (2008) Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453:891–894CrossRefGoogle Scholar
  18. 18.
    Roati G, D’Errico C, Fallani L et al (2008) Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453:895–898CrossRefGoogle Scholar
  19. 19.
    Mancini M, Pagano G, Cappellini G et al (2015) Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349:510–1513CrossRefGoogle Scholar
  20. 20.
    Cataliotti FS, Burger S, Fort C et al (2001) Josephson junction arrays with Bose–Einstein condensates. Science 293:843–846CrossRefGoogle Scholar
  21. 21.
    Hinds EA, Hughes IG (1999) Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J Phys D 32:R119–R146CrossRefGoogle Scholar
  22. 22.
    Ghanbari S, Kieu TD, Sidorov A et al (2006) Permanent magnetic lattices for ultracold atoms and quantum degenerate gases. J Phys B 39:847–890CrossRefGoogle Scholar
  23. 23.
    Gerritsma R, Spreeuw RJC (2006) Topological constraints on magnetostatic traps. Phys Rev A 74:043405CrossRefGoogle Scholar
  24. 24.
    Ghanbari S, Kieu TD, Hannaford P (2007) A class of permanent magnetic lattices for ultracold atoms. J Phys B 40:1283–1294CrossRefGoogle Scholar
  25. 25.
    Gerritsma R, Whitlock S, Fernholz T et al (2007) Lattice of microtraps for ultracold atoms based on patterned magnetic films. Phys Rev A 76:033408CrossRefGoogle Scholar
  26. 26.
    Singh M, Volk M, Akulshin A et al (2008) One dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J Phys B 41:065301CrossRefGoogle Scholar
  27. 27.
    Whitlock S, Gerritsma R, Fernholz T et al (2009) Two-dimensional array of microtraps with atomic shift register on a chip. New J Phys 11:023021CrossRefGoogle Scholar
  28. 28.
    Abdelrahman A, Vasilev M, Alameh K et al (2010) Asymmetrical two-dimensional magnetic lattices for ultracold atoms. Phys Rev A 82:012320CrossRefGoogle Scholar
  29. 29.
    Schmied R, Leibfried D, Spreeuw RJC et al (2010) Optimized magnetic lattices for ultracold atomic ensembles. New J Phys 12:103029CrossRefGoogle Scholar
  30. 30.
    Garcia IL, Darquie B, Curtis EA et al (2010) Experiments on a videotape atom chip: fragmentation and transport studies. New J Phys 12:093017CrossRefGoogle Scholar
  31. 31.
    Leung VYF, Tauschinsky A, van Druten NJ et al (2011) Microtrap arrays on magnetic film atom chips for quantum information science. Quantum Inf Process 10:955–974CrossRefGoogle Scholar
  32. 32.
    Ghanbari S, Abdelrahman A, Sidorov A et al (2014) Analysis of a simple square magnetic lattice for ultracold atoms. J Phys B 47:115301CrossRefGoogle Scholar
  33. 33.
    Jose S, Surendran P, Wang Y et al (2014) Periodic array of Bose–Einstein condensates in a magnetic lattice. Phys Rev A 89:051602(R)CrossRefGoogle Scholar
  34. 34.
    Leung VYF, Pijn DRM, Schlatter H et al (2014) Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms. Rev Sci Instrum 85:053102CrossRefGoogle Scholar
  35. 35.
    Surendran P, Jose S, Wang Y et al (2015) Radiofrequency spectroscopy of a linear array of Bose–Einstein condensates in a magnetic lattice. Phys Rev A 91:023605CrossRefGoogle Scholar
  36. 36.
    Herrera I, Wang Y, Michaux P et al (2015) Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip. J Phys D 48:115002CrossRefGoogle Scholar
  37. 37.
    Yin J, Gao W, Hu J et al (2002) Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters. Opt Commun 206:99–113CrossRefGoogle Scholar
  38. 38.
    Grabowski A, Pfau T (2003) A lattice of magneto-optical and magnetic traps for cold atoms. Eur Phys J D 22:347–354CrossRefGoogle Scholar
  39. 39.
    Günther A, Kraft S, Kemmler M et al (2005) Diffraction of a Bose–Einstein condensate from a magnetic lattice on a microchip. Phys Rev Lett 95:170405CrossRefGoogle Scholar
  40. 40.
    Yun M, Yin J (2006) Practical scheme to realize 2D array of BECs on an atom chip: novel 2D magneto-optical and magnetic lattices. Opt Express 14:2539–2551CrossRefGoogle Scholar
  41. 41.
    West AD, Weatherill KJ, Hayward TJ et al (2012) Realization of the manipulation of ultracold atoms with a reconfigurable nonmagnetic system of domain walls. Nano Lett 12:4065–4069CrossRefGoogle Scholar
  42. 42.
    Romero-Isart O, Navau C, Sanchez A et al (2013) Superconducting vortex lattices for ultracold atoms. Phys Rev Lett 111:145304CrossRefGoogle Scholar
  43. 43.
    Luo X, Wu L, Chen J et al (2015) Generating an effective magnetic lattice for ultracold atoms. New J Phys 17:083048CrossRefGoogle Scholar
  44. 44.
    Yu J, Xu ZF, Lu R et al (2016) Dynamical generation of topological magnetic lattices for ultracold atoms. Phys Rev Lett 116:143003CrossRefGoogle Scholar
  45. 45.
    Whitlock S, Hall BV, Roach T et al (2007) Effect of magnetization inhomogeneity on magnetic microtraps for atoms. Phys Rev A 75:043602CrossRefGoogle Scholar
  46. 46.
    Fernholz T, Gerritsma R, Whitlock S et al (2010) Fully permanent magnet atom chip for Bose–Einstein condensation. Phys Rev A 77:033409CrossRefGoogle Scholar
  47. 47.
    Pepino RA, Cooper J, Meiser D et al (2010) Open quantum systems approach to atomtronics. Phys Rev A 82:013640CrossRefGoogle Scholar
  48. 48.
    Sidorov A, Hannaford P (2011) From magnetic mirrors to atom chips. In: Reichel J, Vuletic V (eds) Atom chips. Wiley-VCH, New York, pp 3–31Google Scholar
  49. 49.
    Opat GI, Wark SJ, Cimmino A (1992) Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules. Appl Phys B 54:396–402CrossRefGoogle Scholar
  50. 50.
    Roach TM, Abele H, Boshier MG et al (1995) Realization of a magnetic mirror for cold atoms. Phys Rev Lett 75:629–632CrossRefGoogle Scholar
  51. 51.
    Sidorov AI, McLean RJ, Rowlands WJ et al (1996) Specular reflection of cold caesium atoms from a magnetostatic mirror. Quantum Semiclass Opt 8:713–725CrossRefGoogle Scholar
  52. 52.
    Sidorov AI, McLean RJ, Scharnberg F et al (2002) Permanent magnet microstructures for atom optics. Acta Phys Polonica B 33:2137–2155Google Scholar
  53. 53.
    Lau DC, Sidorov AI, Opat GI et al (1999) Reflection of cold atoms from an array of current-carrying conductors. Eur J Phys D 5:193–199CrossRefGoogle Scholar
  54. 54.
    Lau DC, McLean RJ, Sidorov AI et al (1999) Magnetic mirrors with micron-scale periodicities for slowly moving neutral atoms. J Opt B 1:371–377CrossRefGoogle Scholar
  55. 55.
    Drndić M, Zabow G, Lee CS et al (1999) Properties of electromagnet mirrors as reflectors of cold Rb atoms. Phys Rev A 60:4012–4015CrossRefGoogle Scholar
  56. 56.
    Sinclair CDJ, Curtis EA, Garcia IL et al (2005) Bose–Einstein condensation on a permanent-magnet atom chip. Phys Rev A 72:031603(R)CrossRefGoogle Scholar
  57. 57.
    Boyd M, Streed EW, Medley P et al (2007) Atom trapping with a thin magnetic film. Phys Rev A 76:043624CrossRefGoogle Scholar
  58. 58.
    Surendran P (2014) Bose–Einstein condensation in a magnetic lattice. Ph.D. thesis, Swinburne University of TechnologyGoogle Scholar
  59. 59.
    Singh M (2008) A magnetic lattice and macroscopic entanglement of a BEC on an atom chip. Ph.D. thesis, Swinburne University of TechnologyGoogle Scholar
  60. 60.
    Hall BV, Whitlock S, Scharnberg F et al (2006) A permanent magnetic film atom chip for Bose–Einstein condensation. J Phys B 39:27–36CrossRefGoogle Scholar
  61. 61.
    Burt E, Ghrist RW, Myatt CJ et al (1997) Coherence, correlations, and collisions: what one learns about Bose–Einstein condensates from their decay. Phys Rev Lett 79:337–340CrossRefGoogle Scholar
  62. 62.
    Söding J, Guéry-Odelin D, Desbiolles P et al (1999) Three-body decay rate of a rubidium Bose–Einstein condensate. Appl Phys B 69:257–261CrossRefGoogle Scholar
  63. 63.
    Görlitz A, Vogels JM, Leanhardt AE et al (2001) Realization of Bose–Einstein condensates in lower dimensions. Phys Rev Lett 87:130402CrossRefGoogle Scholar
  64. 64.
    Greiner M, Bloch I, Mandel O et al (2001) Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys Rev Lett 87:160405CrossRefGoogle Scholar
  65. 65.
    Masets IE, Schmiedmayer J (2010) Thermalization in a quasi-1D ultracold bosonic gas. New J Phys 12:055023CrossRefGoogle Scholar
  66. 66.
    Jacqmin T, Armijo J, Berrada T et al (2011) Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Phys Rev Lett 106:230405CrossRefGoogle Scholar
  67. 67.
    Moritz H, Stöferle T, Köhl M et al (2003) Exciting collective oscillations in a trapped 1D gas. Phys Rev Lett 91:250402CrossRefGoogle Scholar
  68. 68.
    Tauschinsky A (2013) Rydberg atoms on a chip and in a cell. Ph.D. thesis, University of AmsterdamGoogle Scholar
  69. 69.
    Stärk M, Schlickeiser F, Nissen D et al (2015) Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning. Nanotechnology 26:205302CrossRefGoogle Scholar
  70. 70.
    Roy AG, Laughlin DE, Klemmer TJ et al (2001) Seed layer effect on microstructure and magnetic properties of Co/Pd multilayers. J Appl Phys 89:7531–7533CrossRefGoogle Scholar
  71. 71.
    Wang JY, Whitlock S, Scharnberg F et al (2005) Perpendicularly magnetized, grooved GdTbFeCo microstructures for atom optics. J Phys D 38:4015–4020CrossRefGoogle Scholar
  72. 72.
    Robertson N (2010) Magnetic data storage with patterned media. Hitachi Global Storage Technologies. http://www.nnin.org/doc/snmr10/Cornell_nanomanufacturing_2010.Pdf
  73. 73.
    Harber DM, McGuirk JM, Obrecht JM et al (2003) Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J Low Temp Phys 133:229–238CrossRefGoogle Scholar
  74. 74.
    Lin YJ, Teper I, Chin C et al (2004) Impact of Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys Rev Lett 92:050404CrossRefGoogle Scholar
  75. 75.
    Treutlein P (2008) Coherent manipulation of ultracold atoms on atom chips. Ph.D. dissertation, Ludwig Maximilian University of MunichGoogle Scholar
  76. 76.
    Henkel C, Pötting S, Wilkens M (1999) Loss and heating of particles in small and noisy traps. Appl Phys B 69:379CrossRefGoogle Scholar
  77. 77.
    Jones MPA, Vale CV, Sahagun D et al (2003) Spin coupling between cold atoms and the thermal fluctuations of a metal surface. Phys Rev Lett 91:080401CrossRefGoogle Scholar
  78. 78.
    Rekdal PK, Scheel S, Knight PL et al (2004) Thermal spin flips in atom chips. Phys Rev A 70:013811CrossRefGoogle Scholar
  79. 79.
    Tauschinsky A, Thijssen RMT, Whitlock S et al (2010) Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys Rev A 81:063411CrossRefGoogle Scholar
  80. 80.
    Saffman M, Walker T, Molmer K (2010) Quantum information with Rydberg atoms. Rev Mod Phys 82:2313–2363CrossRefGoogle Scholar
  81. 81.
    Hermann-Avigliano C, Teixeira RC, Nguyen TL et al (2014) Long coherence times for Rydberg qubits on a superconducting atom chip. Phys Rev A 90:040502CrossRefGoogle Scholar
  82. 82.
    Sedlacek JA, Kim E, Rittenhouse ST et al (2016) Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity. Phys Rev Lett 116:133201CrossRefGoogle Scholar
  83. 83.
    Naber J, Machluf S, Torralbo-Campo L et al (2015) Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy. arXiv:1512.07511
  84. 84.
    McGuirk JM, Harber DM, Obrecht JM et al (2004) Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose–Einstein condensates. Phys Rev A 69:062905CrossRefGoogle Scholar
  85. 85.
    Weimer H, Müller M, Büchler HP et al (2011) Digital quantum simulation with Rydberg atoms. Quant Inf Process 10:885–906CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yibo Wang
    • 1
  • Prince Surendran
    • 1
  • Smitha Jose
    • 1
  • Tien Tran
    • 1
  • Ivan Herrera
    • 2
  • Shannon Whitlock
    • 3
  • Russell McLean
    • 1
  • Andrei Sidorov
    • 1
  • Peter Hannaford
    • 1
  1. 1.Centre for Quantum and Optical ScienceSwinburne University of TechnologyMelbourneAustralia
  2. 2.Dodd-Walls Centre for Photonic and Quantum Technologies, Department of PhysicsUniversity of AucklandAucklandNew Zealand
  3. 3.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations