Science Bulletin

, Volume 61, Issue 14, pp 1097–1106 | Cite as

Magnetic lattices for ultracold atoms and degenerate quantum gases

  • Yibo Wang
  • Prince Surendran
  • Smitha Jose
  • Tien Tran
  • Ivan Herrera
  • Shannon Whitlock
  • Russell McLean
  • Andrei Sidorov
  • Peter Hannaford
Review Physics & Astronomy


We review recent developments in the use of magnetic lattices as a complementary tool to optical lattices for trapping periodic arrays of ultracold atoms and degenerate quantum gases. Recent advances include the realisation of Bose–Einstein condensation in multiple sites of a magnetic lattice of one-dimensional microtraps, the trapping of ultracold atoms in square and triangular magnetic lattices, and the fabrication of magnetic lattice structures with sub-micron period suitable for quantum tunnelling experiments. Finally, we describe a proposal to utilise long-range interacting Rydberg atoms in a large spacing magnetic lattice to create interactions between atoms on neighbouring sites.


Magnetic lattices Ultracold atoms Degenerate quantum gases Quantum simulation 



This work was supported by an Australian Research Council Discovery Project Grant (DP130101160). We thank M. Singh for his contributions to the early stages of our experiments; M. Albrecht and D. Nissen from the University of Augsburg for providing the Co/Pd magnetic films; and A. Balcytis, P. Michaux and S. Juodkazis for fabricating the magnetic microstructures. We thank the Institute of Physics Publishing for permission to reproduce Figs. 1b, 5 and 6 and the American Institute of Physics Publishing for permission to reproduce Fig. 7.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chu S (1998) Nobel lecture: the manipulation of neutral particles. Rev Mod Phys 70:685–706CrossRefGoogle Scholar
  2. 2.
    Cohen-Tannoudji CN (1998) Nobel lecture: manipulating atoms with photons. Rev Mod Phys 70:707–719CrossRefGoogle Scholar
  3. 3.
    Phillips WD (1998) Nobel lecture: laser cooling and trapping of neutral atoms. Rev Mod Phys 70:721–741CrossRefGoogle Scholar
  4. 4.
    Morsch O, Oberthaler M (2006) Dynamics of Bose–Einstein condensates in optical lattices. Rev Mod Phys 78:179–215CrossRefGoogle Scholar
  5. 5.
    Lewenstein M, Sanpera A, Ahufinger V et al (2007) Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv Phys 56:243–379CrossRefGoogle Scholar
  6. 6.
    Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964CrossRefGoogle Scholar
  7. 7.
    Takamoto M, Hong FL, Higashi R et al (2005) An optical lattice clock. Nature 435:321–324CrossRefGoogle Scholar
  8. 8.
    Bakr WS, Gillen JI, Peng A et al (2009) A quantum gas microscope for detecting single atoms in a Bose–Hubbard regime optical lattice. Nature 462:74–77CrossRefGoogle Scholar
  9. 9.
    Calarco T, Hinds EA, Jaksch D et al (2000) Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys Rev A 61:022304CrossRefGoogle Scholar
  10. 10.
    Monroe C (2002) Quantum information processing with atoms and photons. Nature 416:238–246CrossRefGoogle Scholar
  11. 11.
    Greiner M, Mandel O, Esslinger T et al (2002) Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415:39–44CrossRefGoogle Scholar
  12. 12.
    Uehlinger T, Jotzu G, Messer M et al (2013) Artificial graphene with tunable interactions. Phys Rev Lett 111:185307CrossRefGoogle Scholar
  13. 13.
    Simon J, Bakr WS, Ma R et al (2011) Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472:307–312CrossRefGoogle Scholar
  14. 14.
    Hart RA, Duarte PM, Yang TL et al (2015) Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519:211–214CrossRefGoogle Scholar
  15. 15.
    Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903CrossRefGoogle Scholar
  16. 16.
    Martiyanov K, Makhalov V, Turlapov A (2010) Observation of a two-dimensional Fermi gas of atoms. Phys Rev Lett 105:030404CrossRefGoogle Scholar
  17. 17.
    Billy J, Josse V, Zuo Z et al (2008) Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453:891–894CrossRefGoogle Scholar
  18. 18.
    Roati G, D’Errico C, Fallani L et al (2008) Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453:895–898CrossRefGoogle Scholar
  19. 19.
    Mancini M, Pagano G, Cappellini G et al (2015) Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349:510–1513CrossRefGoogle Scholar
  20. 20.
    Cataliotti FS, Burger S, Fort C et al (2001) Josephson junction arrays with Bose–Einstein condensates. Science 293:843–846CrossRefGoogle Scholar
  21. 21.
    Hinds EA, Hughes IG (1999) Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J Phys D 32:R119–R146CrossRefGoogle Scholar
  22. 22.
    Ghanbari S, Kieu TD, Sidorov A et al (2006) Permanent magnetic lattices for ultracold atoms and quantum degenerate gases. J Phys B 39:847–890CrossRefGoogle Scholar
  23. 23.
    Gerritsma R, Spreeuw RJC (2006) Topological constraints on magnetostatic traps. Phys Rev A 74:043405CrossRefGoogle Scholar
  24. 24.
    Ghanbari S, Kieu TD, Hannaford P (2007) A class of permanent magnetic lattices for ultracold atoms. J Phys B 40:1283–1294CrossRefGoogle Scholar
  25. 25.
    Gerritsma R, Whitlock S, Fernholz T et al (2007) Lattice of microtraps for ultracold atoms based on patterned magnetic films. Phys Rev A 76:033408CrossRefGoogle Scholar
  26. 26.
    Singh M, Volk M, Akulshin A et al (2008) One dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J Phys B 41:065301CrossRefGoogle Scholar
  27. 27.
    Whitlock S, Gerritsma R, Fernholz T et al (2009) Two-dimensional array of microtraps with atomic shift register on a chip. New J Phys 11:023021CrossRefGoogle Scholar
  28. 28.
    Abdelrahman A, Vasilev M, Alameh K et al (2010) Asymmetrical two-dimensional magnetic lattices for ultracold atoms. Phys Rev A 82:012320CrossRefGoogle Scholar
  29. 29.
    Schmied R, Leibfried D, Spreeuw RJC et al (2010) Optimized magnetic lattices for ultracold atomic ensembles. New J Phys 12:103029CrossRefGoogle Scholar
  30. 30.
    Garcia IL, Darquie B, Curtis EA et al (2010) Experiments on a videotape atom chip: fragmentation and transport studies. New J Phys 12:093017CrossRefGoogle Scholar
  31. 31.
    Leung VYF, Tauschinsky A, van Druten NJ et al (2011) Microtrap arrays on magnetic film atom chips for quantum information science. Quantum Inf Process 10:955–974CrossRefGoogle Scholar
  32. 32.
    Ghanbari S, Abdelrahman A, Sidorov A et al (2014) Analysis of a simple square magnetic lattice for ultracold atoms. J Phys B 47:115301CrossRefGoogle Scholar
  33. 33.
    Jose S, Surendran P, Wang Y et al (2014) Periodic array of Bose–Einstein condensates in a magnetic lattice. Phys Rev A 89:051602(R)CrossRefGoogle Scholar
  34. 34.
    Leung VYF, Pijn DRM, Schlatter H et al (2014) Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms. Rev Sci Instrum 85:053102CrossRefGoogle Scholar
  35. 35.
    Surendran P, Jose S, Wang Y et al (2015) Radiofrequency spectroscopy of a linear array of Bose–Einstein condensates in a magnetic lattice. Phys Rev A 91:023605CrossRefGoogle Scholar
  36. 36.
    Herrera I, Wang Y, Michaux P et al (2015) Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip. J Phys D 48:115002CrossRefGoogle Scholar
  37. 37.
    Yin J, Gao W, Hu J et al (2002) Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters. Opt Commun 206:99–113CrossRefGoogle Scholar
  38. 38.
    Grabowski A, Pfau T (2003) A lattice of magneto-optical and magnetic traps for cold atoms. Eur Phys J D 22:347–354CrossRefGoogle Scholar
  39. 39.
    Günther A, Kraft S, Kemmler M et al (2005) Diffraction of a Bose–Einstein condensate from a magnetic lattice on a microchip. Phys Rev Lett 95:170405CrossRefGoogle Scholar
  40. 40.
    Yun M, Yin J (2006) Practical scheme to realize 2D array of BECs on an atom chip: novel 2D magneto-optical and magnetic lattices. Opt Express 14:2539–2551CrossRefGoogle Scholar
  41. 41.
    West AD, Weatherill KJ, Hayward TJ et al (2012) Realization of the manipulation of ultracold atoms with a reconfigurable nonmagnetic system of domain walls. Nano Lett 12:4065–4069CrossRefGoogle Scholar
  42. 42.
    Romero-Isart O, Navau C, Sanchez A et al (2013) Superconducting vortex lattices for ultracold atoms. Phys Rev Lett 111:145304CrossRefGoogle Scholar
  43. 43.
    Luo X, Wu L, Chen J et al (2015) Generating an effective magnetic lattice for ultracold atoms. New J Phys 17:083048CrossRefGoogle Scholar
  44. 44.
    Yu J, Xu ZF, Lu R et al (2016) Dynamical generation of topological magnetic lattices for ultracold atoms. Phys Rev Lett 116:143003CrossRefGoogle Scholar
  45. 45.
    Whitlock S, Hall BV, Roach T et al (2007) Effect of magnetization inhomogeneity on magnetic microtraps for atoms. Phys Rev A 75:043602CrossRefGoogle Scholar
  46. 46.
    Fernholz T, Gerritsma R, Whitlock S et al (2010) Fully permanent magnet atom chip for Bose–Einstein condensation. Phys Rev A 77:033409CrossRefGoogle Scholar
  47. 47.
    Pepino RA, Cooper J, Meiser D et al (2010) Open quantum systems approach to atomtronics. Phys Rev A 82:013640CrossRefGoogle Scholar
  48. 48.
    Sidorov A, Hannaford P (2011) From magnetic mirrors to atom chips. In: Reichel J, Vuletic V (eds) Atom chips. Wiley-VCH, New York, pp 3–31Google Scholar
  49. 49.
    Opat GI, Wark SJ, Cimmino A (1992) Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules. Appl Phys B 54:396–402CrossRefGoogle Scholar
  50. 50.
    Roach TM, Abele H, Boshier MG et al (1995) Realization of a magnetic mirror for cold atoms. Phys Rev Lett 75:629–632CrossRefGoogle Scholar
  51. 51.
    Sidorov AI, McLean RJ, Rowlands WJ et al (1996) Specular reflection of cold caesium atoms from a magnetostatic mirror. Quantum Semiclass Opt 8:713–725CrossRefGoogle Scholar
  52. 52.
    Sidorov AI, McLean RJ, Scharnberg F et al (2002) Permanent magnet microstructures for atom optics. Acta Phys Polonica B 33:2137–2155Google Scholar
  53. 53.
    Lau DC, Sidorov AI, Opat GI et al (1999) Reflection of cold atoms from an array of current-carrying conductors. Eur J Phys D 5:193–199CrossRefGoogle Scholar
  54. 54.
    Lau DC, McLean RJ, Sidorov AI et al (1999) Magnetic mirrors with micron-scale periodicities for slowly moving neutral atoms. J Opt B 1:371–377CrossRefGoogle Scholar
  55. 55.
    Drndić M, Zabow G, Lee CS et al (1999) Properties of electromagnet mirrors as reflectors of cold Rb atoms. Phys Rev A 60:4012–4015CrossRefGoogle Scholar
  56. 56.
    Sinclair CDJ, Curtis EA, Garcia IL et al (2005) Bose–Einstein condensation on a permanent-magnet atom chip. Phys Rev A 72:031603(R)CrossRefGoogle Scholar
  57. 57.
    Boyd M, Streed EW, Medley P et al (2007) Atom trapping with a thin magnetic film. Phys Rev A 76:043624CrossRefGoogle Scholar
  58. 58.
    Surendran P (2014) Bose–Einstein condensation in a magnetic lattice. Ph.D. thesis, Swinburne University of TechnologyGoogle Scholar
  59. 59.
    Singh M (2008) A magnetic lattice and macroscopic entanglement of a BEC on an atom chip. Ph.D. thesis, Swinburne University of TechnologyGoogle Scholar
  60. 60.
    Hall BV, Whitlock S, Scharnberg F et al (2006) A permanent magnetic film atom chip for Bose–Einstein condensation. J Phys B 39:27–36CrossRefGoogle Scholar
  61. 61.
    Burt E, Ghrist RW, Myatt CJ et al (1997) Coherence, correlations, and collisions: what one learns about Bose–Einstein condensates from their decay. Phys Rev Lett 79:337–340CrossRefGoogle Scholar
  62. 62.
    Söding J, Guéry-Odelin D, Desbiolles P et al (1999) Three-body decay rate of a rubidium Bose–Einstein condensate. Appl Phys B 69:257–261CrossRefGoogle Scholar
  63. 63.
    Görlitz A, Vogels JM, Leanhardt AE et al (2001) Realization of Bose–Einstein condensates in lower dimensions. Phys Rev Lett 87:130402CrossRefGoogle Scholar
  64. 64.
    Greiner M, Bloch I, Mandel O et al (2001) Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys Rev Lett 87:160405CrossRefGoogle Scholar
  65. 65.
    Masets IE, Schmiedmayer J (2010) Thermalization in a quasi-1D ultracold bosonic gas. New J Phys 12:055023CrossRefGoogle Scholar
  66. 66.
    Jacqmin T, Armijo J, Berrada T et al (2011) Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Phys Rev Lett 106:230405CrossRefGoogle Scholar
  67. 67.
    Moritz H, Stöferle T, Köhl M et al (2003) Exciting collective oscillations in a trapped 1D gas. Phys Rev Lett 91:250402CrossRefGoogle Scholar
  68. 68.
    Tauschinsky A (2013) Rydberg atoms on a chip and in a cell. Ph.D. thesis, University of AmsterdamGoogle Scholar
  69. 69.
    Stärk M, Schlickeiser F, Nissen D et al (2015) Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning. Nanotechnology 26:205302CrossRefGoogle Scholar
  70. 70.
    Roy AG, Laughlin DE, Klemmer TJ et al (2001) Seed layer effect on microstructure and magnetic properties of Co/Pd multilayers. J Appl Phys 89:7531–7533CrossRefGoogle Scholar
  71. 71.
    Wang JY, Whitlock S, Scharnberg F et al (2005) Perpendicularly magnetized, grooved GdTbFeCo microstructures for atom optics. J Phys D 38:4015–4020CrossRefGoogle Scholar
  72. 72.
    Robertson N (2010) Magnetic data storage with patterned media. Hitachi Global Storage Technologies.
  73. 73.
    Harber DM, McGuirk JM, Obrecht JM et al (2003) Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J Low Temp Phys 133:229–238CrossRefGoogle Scholar
  74. 74.
    Lin YJ, Teper I, Chin C et al (2004) Impact of Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys Rev Lett 92:050404CrossRefGoogle Scholar
  75. 75.
    Treutlein P (2008) Coherent manipulation of ultracold atoms on atom chips. Ph.D. dissertation, Ludwig Maximilian University of MunichGoogle Scholar
  76. 76.
    Henkel C, Pötting S, Wilkens M (1999) Loss and heating of particles in small and noisy traps. Appl Phys B 69:379CrossRefGoogle Scholar
  77. 77.
    Jones MPA, Vale CV, Sahagun D et al (2003) Spin coupling between cold atoms and the thermal fluctuations of a metal surface. Phys Rev Lett 91:080401CrossRefGoogle Scholar
  78. 78.
    Rekdal PK, Scheel S, Knight PL et al (2004) Thermal spin flips in atom chips. Phys Rev A 70:013811CrossRefGoogle Scholar
  79. 79.
    Tauschinsky A, Thijssen RMT, Whitlock S et al (2010) Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys Rev A 81:063411CrossRefGoogle Scholar
  80. 80.
    Saffman M, Walker T, Molmer K (2010) Quantum information with Rydberg atoms. Rev Mod Phys 82:2313–2363CrossRefGoogle Scholar
  81. 81.
    Hermann-Avigliano C, Teixeira RC, Nguyen TL et al (2014) Long coherence times for Rydberg qubits on a superconducting atom chip. Phys Rev A 90:040502CrossRefGoogle Scholar
  82. 82.
    Sedlacek JA, Kim E, Rittenhouse ST et al (2016) Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity. Phys Rev Lett 116:133201CrossRefGoogle Scholar
  83. 83.
    Naber J, Machluf S, Torralbo-Campo L et al (2015) Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy. arXiv:1512.07511
  84. 84.
    McGuirk JM, Harber DM, Obrecht JM et al (2004) Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose–Einstein condensates. Phys Rev A 69:062905CrossRefGoogle Scholar
  85. 85.
    Weimer H, Müller M, Büchler HP et al (2011) Digital quantum simulation with Rydberg atoms. Quant Inf Process 10:885–906CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yibo Wang
    • 1
  • Prince Surendran
    • 1
  • Smitha Jose
    • 1
  • Tien Tran
    • 1
  • Ivan Herrera
    • 2
  • Shannon Whitlock
    • 3
  • Russell McLean
    • 1
  • Andrei Sidorov
    • 1
  • Peter Hannaford
    • 1
  1. 1.Centre for Quantum and Optical ScienceSwinburne University of TechnologyMelbourneAustralia
  2. 2.Dodd-Walls Centre for Photonic and Quantum Technologies, Department of PhysicsUniversity of AucklandAucklandNew Zealand
  3. 3.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations