Skip to main content
Log in

Detection of radio-frequency field with a single spin in diamond

基于金刚石内单自旋的射频场探测

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Detection of a.c. magnetic field is consequential for many developments in physical and biological sciences, and various designs of magnetometer have been proposed recently. However, the large size of sensor and the extreme measurement conditions required strongly limit their application. It remains a challenge to reconstruct the vector of a.c. field with nanoscale spatial resolution using a single spin under ambient conditions. In this work, we choose the radio-frequency (RF) field as a typical case and realize the measurement of RF field based on a nitrogen-vacancy (NV) center in diamond. We build a solid sensor through measuring the effect of RF field on NV electron spin energy levels and the transition between them. Both of the phase and amplitude (including the transverse and longitudinal components) are measured by this new approach.

摘要

射频场的探测对于物理学、电子学与生命科学等很多领域的发展有着重要的意义。近年来,一些关于射频场探测的方案被提出。但是由于有的探针尺寸过大,有的探针需要极端探测条件(比如低温),它们的应用受到了限制。本文展示了如何在室温下用金刚石氮-空穴色心(NV色心)体系的单个电子自旋来探测射频场。通过射频场对NV色心电子自旋拉比振荡的影响,我们实现了对射频场的横向幅度、纵向幅度与相位的探测。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budker D, Romalis M (2007) Optical magnetometry. Nat Phys 3:227–234

    Article  Google Scholar 

  2. Bending SJ (1999) Local magnetic probes of superconductors. Adv Phys 48:449–535

    Article  Google Scholar 

  3. Kleiner R, Koelle D, Ludwig F et al (2004) Superconducting quantum interference devices: state of the art and applications. Proc IEEE 92:1534–1548

    Article  Google Scholar 

  4. Owston CN (1967) A hall effect magnetometer for small magnetic fields. J Sci Instrum 44:798

    Article  Google Scholar 

  5. Rugar D, Budakian R, Mamin HJ et al (2004) Single spin detection by magnetic resonance force microscopy. Nature 430:329–332

    Article  Google Scholar 

  6. Black RC, Wellstood FC, Dantsker E et al (1995) Imaging radio-frequency fields using a scanning SQUID microscope. Appl Phys Lett 66:1267–1269

    Article  Google Scholar 

  7. Böhi P, Riedel MF, Hänsch TW et al (2010) Imaging of microwave fields using ultracold atoms. Appl Phys Lett 97:051101

    Article  Google Scholar 

  8. Ockeloen CF, Schmied R, Riedel MF et al (2013) Quantum metrology with a scanning probe atom interferometer. Phys Rev Lett 111:143001

    Article  Google Scholar 

  9. Serov R, Richardson MC, Burtyn P (1975) Probe for the measurement of magnetic fields with sub-nanosecond resolution. Rev Sci Instrum 46:886–888

    Article  Google Scholar 

  10. Gao Y, Wolff I (1996) A new miniature magnetic field probe for measuring three-dimensional fields in planar high-frequency circuits. IEEE Trans Microw Theory Tech 44:911–918

    Article  Google Scholar 

  11. Sugawara K, Chen CP, Ma Z et al (2007) Non-contacting electric and magnetic field probe for measuring EM fields on microwave planar circuits. Asia-Pacific microwave conference, 2007, APMC 2007. IEEE, pp 1–4

  12. Gao Y, Wolff I (1995) A miniature magnetic field probe for measuring fields in planar high-frequency circuits. In: Microwave symposium digest, 1995, IEEE MTT-S International, pp 1159–1162

  13. Gruber A, Dräbenstedt A, Tietz C et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014

    Article  Google Scholar 

  14. Jiang L, Hodges JS, Maze JR et al (2009) Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326:267–272

    Article  Google Scholar 

  15. Shi F, Zhang Q, Naydenov B et al (2013) Quantum logic readout and cooling of a single dark electron spin. Phys Rev B 87:195414

    Article  Google Scholar 

  16. Balasubramanian G, Neumann P, Twitchen D et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8:383–387

    Article  Google Scholar 

  17. Rong X, Geng J, Wang Z et al (2014) Implementation of dynamically corrected gates on a single electron spin in diamond. Phys Rev Lett 112:050503

    Article  Google Scholar 

  18. Rong X, Geng J, Shi F et al (2015) Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat Commun 6:8748

    Article  Google Scholar 

  19. Fuchs GD, Dobrovitski VV, Toyli DM et al (2009) Gigahertz dynamics of a strongly driven single quantum spin. Science 326:1520–1522

    Article  Google Scholar 

  20. Hu X, Liu GQ, Xu ZC et al (2012) Influence of microwave detuning on Ramsey fringes of a single nitrogen vacancy center spin in diamond. Chin Phys Lett 29:024210

    Article  Google Scholar 

  21. Shi F, Zhang Q, Wang P et al (2015) Single-protein spin resonance spectroscopy under ambient conditions. Science 347:1135–1138

    Article  Google Scholar 

  22. Shi F, Kong X, Wang P et al (2014) Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nat Phys 10:21–25

    Article  Google Scholar 

  23. Maze JR, Stanwix PL, Hodges JS et al (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647

    Article  Google Scholar 

  24. Balasubramanian G, Chan IY, Kolesov R et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651

    Article  Google Scholar 

  25. De Lange G, Ristè D, Dobrovitski VV et al (2011) Single-spin magnetometry with multipulse sensing sequences. Phys Rev Lett 106:080802

    Article  Google Scholar 

  26. Loretz M, Rosskopf T, Degen CL (2013) Radio-frequency magnetometry using a single electron spin. Phys Rev Lett 110:017602

    Article  Google Scholar 

  27. Wang P, Yuan Z, Huang P et al (2015) High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nat Commun 6:6631

    Article  Google Scholar 

  28. Wang PF, Ju CY, Shi FZ et al (2013) Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond. Chin Sci Bull 58:2920–2923

    Google Scholar 

  29. Zhou JW, Wang PF, Shi FZ et al (2014) Quantum information processing and metrology with color centers in diamonds. Front Phys 9:587–597

    Article  Google Scholar 

  30. Zhang Q, Wang PF, Shi FZ et al (2014) Quantum precision metrology based on single-spin magnetic resonance. Sci Sin Inf 44:329–344

    Article  Google Scholar 

  31. Popa I (2006) Pulsed magnetic resonance on single defect centers in diamond. Dissertation, Universität Stuttgart

  32. Leskes M, Madhu PK, Vega S (2010) Floquet theory in solid-state nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 57:345–380

    Article  Google Scholar 

  33. Zhou J, Huang P, Zhang Q et al (2014) Observation of time-domain Rabi oscillations in the Landau–Zener regime with a single electronic spin. Phys Rev Lett 112:010503

    Article  Google Scholar 

  34. Taylor JM, Cappellaro P, Childress L et al (2008) High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4:810–816

    Article  Google Scholar 

  35. Chang DE, Sørensen AS, Hemmer PR et al (2006) Quantum optics with surface plasmons. Phys Rev Lett 97:053002

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB921800), the National Natural Science Foundation of China (11227901 and 31470835), the Chinese Academy of Sciences (XDB01030400), and the Fundamental Research Funds for the Central Universities (WK2340000064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kong, F., Shi, F. et al. Detection of radio-frequency field with a single spin in diamond. Sci. Bull. 61, 1132–1137 (2016). https://doi.org/10.1007/s11434-016-1122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1122-y

Keywords

Navigation