Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries



Density functional theory calculations and ab initio molecular dynamics simulations are performed to study the feasibility of using borophene, a newly synthesized two-dimensional sheet of boron, as an anode material for sodium-ion and sodium–oxygen batteries. The theoretical capacity of borophene is found to be as high as 1,218 mAh g–1 (Na0.5B). More importantly, it is demonstrated that the sodium diffusion energy barrier along the valley direction is as low as 0.0019 eV, which corresponds to a diffusivity of more than a thousand times higher than that of conventional anode materials such as Na2Ti3O7 and Na3Sb. Hence, the use of borophene will revolutionize the rate capability of sodium-based batteries. Moreover, it is predicted that, during the sodiation process, the average open-circuit voltage is 0.53 V, which can effectively suppress the formation of dendrites while maximizing the energy density. The metallic feature and structural integrity of borophene can be well preserved at different sodium concentrations, demonstrating good electronic conductivity and stable cyclability.


本文通过密度泛函理论计算以及第一性分子动力学模拟研究了最新合成出的二维硼结构硼烯作为负极材料应用于钠离子电池和钠氧气电池中的可行性。理论预测硼烯作为钠负极材料的容量高达1,218 mA g–1 (Na0.5B). 更为重要的是,计算表明钠沿硼烯结构中谷方向扩散的能垒低至0.0019 eV,对应的扩散率比传统的负极材料(如Na2Ti3O7 和 Na3Sb)高出一千多倍。因此,硼烯应用于钠负极会对钠电池的倍率性能带来革命性的提升。此外,根据预测,在钠离子嵌入过程中,平均开路电压为0.53 V。 该电压在保证抑制枝晶形成的同时可以将能量密度最大化。硼烯的金属特性和结构的完整性在不同的钠离子浓度下均可以保持,预示着良好的电子传导特性以及循环性能。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  2. 2.

    Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  Google Scholar 

  3. 3.

    Yabuuchi N, Kubota K, Dahbi M et al (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  Google Scholar 

  4. 4.

    Han MH, Gonzalo E, Singh G et al (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102

    Article  Google Scholar 

  5. 5.

    Xia C, Black R, Fernandes R et al (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501

    Article  Google Scholar 

  6. 6.

    Yadegari H, Banis MN, Xiao B et al (2015) Three-dimensional nanostructured air electrode for sodium–oxygen batteries: a mechanism study toward the cyclability of the cell. Chem Mater 27:3040–3047

    Article  Google Scholar 

  7. 7.

    Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011–A1014

    Article  Google Scholar 

  8. 8.

    Mortazavi M, Deng J, Shenoy VB et al (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214

    Article  Google Scholar 

  9. 9.

    Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88

    Article  Google Scholar 

  10. 10.

    Alcántara R, Jaraba M, Lavela P et al (2002) NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848

    Article  Google Scholar 

  11. 11.

    Liu Y, Zhang N, Jiao L et al (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25:214–220

    Article  Google Scholar 

  12. 12.

    Datta D, Li J, Shenoy VB (2014) Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl Mater Interfaces 6:1788–1795

    Article  Google Scholar 

  13. 13.

    Ling C, Mizuno F (2014) Boron-doped graphene as a promising anode for Na-ion batteries. Phys Chem Chem Phys 16:10419–10424

    Article  Google Scholar 

  14. 14.

    Mortazavi M, Wang C, Deng J et al (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286

    Article  Google Scholar 

  15. 15.

    Yang E, Ji H, Jung Y (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119:26374–26380

    Article  Google Scholar 

  16. 16.

    Yang E, Ji H, Kim J et al (2015) Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys Chem Chem Phys 17:5000–5005

    Article  Google Scholar 

  17. 17.

    Yu YX (2016) Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J Phys Chem C 120:5288–5296

    Article  Google Scholar 

  18. 18.

    Kulish VV, Malyi OI, Persson C et al (2015) Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys Chem Chem Phys 17:13921–13928

    Article  Google Scholar 

  19. 19.

    Hembram KP, Jung H, Yeo BC et al (2015) Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J Phys Chem C 119:15041–15046

    Article  Google Scholar 

  20. 20.

    Xie X, Ao Z, Su D et al (2015) MoS2/Graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25:1393–1403

    Article  Google Scholar 

  21. 21.

    Sun J, Lee HW, Pasta M et al (2015) A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10:980–985

    Article  Google Scholar 

  22. 22.

    Mannix AJ, Zhou XF, Kiraly B et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  Google Scholar 

  23. 23.

    Lau KC, Pandey R (2007) Stability and electronic properties of atomistically-engineered 2D boron sheets. J Phys Chem C 111:2906–2912

    Article  Google Scholar 

  24. 24.

    Penev ES, Bhowmick S, Sadrzadeh A et al (2012) Polymorphism of two-dimensional boron. Nano Lett 12:2441–2445

    Article  Google Scholar 

  25. 25.

    Piazza ZA, Hu HS, Li WL et al (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113

    Article  Google Scholar 

  26. 26.

    Pan H, Lu X, Yu X et al (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194

    Article  Google Scholar 

  27. 27.

    Baggetto L, Ganesh P, Sun CN et al (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994

    Article  Google Scholar 

  28. 28.

    Gonze X, Beuken JM, Caracas R et al (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492

    Article  Google Scholar 

  29. 29.

    Gonze X, Amadon B, Anglade PM et al (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180:2582–2615

    Article  Google Scholar 

  30. 30.

    Gonze X (2005) A brief introduction to the ABINIT software package. Zeitschrift für Kristallographie Cryst Mater 220:558–562

    Google Scholar 

  31. 31.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  32. 32.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  33. 33.

    Jing Y, Zhou Z, Cabrera CR et al (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117:25409–25413

    Article  Google Scholar 

  34. 34.

    Li W, Yang Y, Zhang G et al (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691–1697

    Article  Google Scholar 

  35. 35.

    Neto AC, Guinea F, Peres NM et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  36. 36.

    Peng B, Zhang H, Shao H et al (2016) The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J Mater Chem C 4:3592–3598

    Article  Google Scholar 

  37. 37.

    Jiang HR, Lu Z, Wu MC et al (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104

    Article  Google Scholar 

  38. 38.

    Ling C, Mizuno F (2012) Capture lithium in αMnO2: insights from first principles. Chem Mater 24:3943–3951

    Article  Google Scholar 

  39. 39.

    Aydinol MK, Kohan AF, Ceder G et al (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354

    Article  Google Scholar 

Download references


This work was fully supported by a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (16213414).

Author information



Corresponding author

Correspondence to Tianshou Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1430 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhao, T., Xu, A. et al. Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries. Sci. Bull. 61, 1138–1144 (2016). https://doi.org/10.1007/s11434-016-1118-7

Download citation


  • Borophene
  • Sodium anode
  • Directional diffusion
  • Ultrafast diffusivity


  • 史乐
  • 赵天寿
  • 徐翱
  • 徐建波