Advertisement

Science Bulletin

, Volume 61, Issue 11, pp 897–910 | Cite as

Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum

  • Julie Lebreton-Anberrée
  • Shihu Li
  • Shu-Feng Li
  • Robert A. Spicer
  • Shi-Tao Zhang
  • Tao Su
  • Chenglong Deng
  • Zhe-Kun Zhou
Article Earth Sciences

Abstract

The Mid-Miocene Climatic Optimum (MMCO; ~15–17 Ma) was one of the short-term climatic warm events that punctuated the Cenozoic long-term cooling trend. Because there are very few terrestrial records of this event, most of our understanding comes from marine cores. In this report, we first present new palaeomagnetic data that revises the dating of our 400 m-thick lacustrine section in Wenshan (Yunnan), previously thought to be Late Miocene. These new data suggest an older age, ca. 15.2–16.5 Ma, coinciding with the MMCO. We measured δ 13C on bulk organic matter (δ 13Corg), total organic carbon (TOC), total nitrogen (TN) and C/N ratios at a high sample resolution to: (1) reconstruct the palaeoenvironmental changes in the lake catchment area, and (2) infer mechanisms responsible for these changes. Our results show that all four geochemical parameters demonstrate that a strong environmental change occurred around the middle of the section, shortly after the C5Cn/C5Br geomagnetic reversal and the Early/Middle Miocene boundary at 15.97 Ma. We propose that the environmental shift may be due to a combination of a change in climate, which became cooler, together with a change in organic matter cycling within the lake. This study provides a new insight into the MMCO and demonstrates that although the MMCO was generally a warm event, it was also a time of climatic instability and abrupt environmental changes.

Keywords

Yunnan Mid-Miocene Climatic Optimum Bulk organic carbon isotopes (δ13CorgC/N ratio TOC 

中中新世气候适宜期环境变化:来自中国西南部湖泊沉积地球化学的证据

摘要

中中新世气候适宜期(~15–17 Ma)是新生代气候变冷背景下的一次短期气候温暖事件。由于缺乏陆相记录,目前对于该事件的研究多来自于海洋钻孔。本文首先对位于云南东南部的文山湖相地层(厚400米 )开展了高分辨率的古地磁定年,结果显示其年龄为15.2–16.5 Ma,正好位于中中新世气候适宜期内,而不是先前认为的晚中新世。在精确年代框架的基础上,通过高分辨率的全岩块状土样中的有机碳同位素、总有机碳、总氮和碳氮比研究,重建了湖盆的古环境变化,并且探讨了造成这种变化的可能机制。本研究中所测四个的地球化学参数均显示在剖面的中部大约 15.97 Ma时 (稍晚于C5Cn/C5Br地磁倒转或早中新世与晚中新世界限)环境发生了显著变化,可能是气候变冷和湖泊内有机质循环的变化共同造成的。本研究结果表明:尽管中中新世气候适宜期总体表现为气候温暖,而这恰巧是造成环境变化的不稳定气候事件。这一结论也为认识和研究中中新世气候适宜期提供了新的证据和视野。

关键词

云南 中中新世气候适宜期 地球化学 全岩有机碳 碳氮比 总有机碳 

Notes

Acknowledgments

The authors are grateful to two anonymous reviewers for their constructive comments, which significantly improved the manuscript. The authors thank fellow members of staff of the Palaeoecology group in Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences for assistance during sample collection and productive critical discussions; Professor Yun Fu from the Central Laboratory of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences for assistance during the TN measurements; Dr. Olesya V. Bondarenko, from the Russian Academy of Sciences, Vladivostok, for her help and support during sample preparation; Yi-Min Tian from the Faculty of Land Resource Engineering, Kunming University of Science and Technology, for her assistance when preparing and observing thin sections. The authors are grateful to Dr. Andrea Kern from the USGS and Dr. Dayou Zhai from Yunnan University for fruitful discussions and suggestions to improve the manuscript. This study was supported by National Natural Science Foundation of China (U1502231), the CAS 135 Program (XTBG-F01), and a grant from the China Scholarship Council to J. Lebreton Anberrée (2013GCX606). Shihu Li and Chenglong Deng acknowledge support from the National Natural Science Foundation of China (41404056), and the State Key Laboratory of Lithospheric Evolution (11431780). Shu-Feng Li was supported by the Foundation of the State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, CAS (15310). This work is part of the NECLIME (Neogene Climate of Eurasia) network.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11434_2016_1095_MOESM1_ESM.doc (760 kb)
Supplementary material 1 (DOC 759 kb)

References

  1. 1.
    Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefGoogle Scholar
  2. 2.
    Holbourn A, Kuhnt W, Kochhann KGD et al (2015) Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43:123–126CrossRefGoogle Scholar
  3. 3.
    Pound MJ, Haywood AM, Salzmann U et al (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci Rev 112:1–22CrossRefGoogle Scholar
  4. 4.
    You Y, Huber M, Müller RD et al (2009) Simulation of the middle miocene climate optimum. Geophys Res Lett 36:L04702CrossRefGoogle Scholar
  5. 5.
    Holbourn A, Kuhnt W, Schulz M et al (2007) Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett 261:534–550CrossRefGoogle Scholar
  6. 6.
    Holbourn A, Kuhnt W, Lyle M et al (2013) Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42:19–22CrossRefGoogle Scholar
  7. 7.
    Griener KW, Warny S, Askin R et al (2015) Early to middle Miocene vegetation history of Antarctica supports eccentricity-paced warming intervals during the Antarctic icehouse phase. Glob Planet Change 127:67–78CrossRefGoogle Scholar
  8. 8.
    Feakins SJ, Warny S, Lee J-E (2012) Hydrologic cycling over Antarctica during the middle Miocene warming. Nat Geosci 5:557–560CrossRefGoogle Scholar
  9. 9.
    Zan J, Fang X, Yan M et al (2015) Lithologic and rock magnetic evidence for the Mid-Miocene Climatic Optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 431:6–14CrossRefGoogle Scholar
  10. 10.
    Sun J, Zhang Z (2008) Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Glob Planet Change 64:53–68CrossRefGoogle Scholar
  11. 11.
    Li S-F, Mao L-M, Spicer RA et al (2015) Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol 425:14–40CrossRefGoogle Scholar
  12. 12.
    Zhang Q-Q, Ferguson DK, Mosbrugger V et al (2012) Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 363–364:23–36CrossRefGoogle Scholar
  13. 13.
    Jacques FMB, Guo S-X, Su T et al (2011) Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol 304:318–327CrossRefGoogle Scholar
  14. 14.
    Xing Y, Utescher T, Jacques FMB et al (2012) Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: evidence from plant macrofossils. Palaeogeogr Palaeoclimatol Palaeoecol 358–360:19–26CrossRefGoogle Scholar
  15. 15.
    Xia K, Su T, Liu YS et al (2009) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeogr Palaeoclimatol Palaeoecol 276:80–86CrossRefGoogle Scholar
  16. 16.
    Sun B-N, Wu J-Y, Liu Y-S et al (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 304:328–336CrossRefGoogle Scholar
  17. 17.
    Huang Y, Ji X, Su T et al (2015) Fossil seeds of Euryale (Nymphaeaceae) indicate a lake or swamp environment in the late Miocene Zhaotong Basin of southwestern China. Sci Bull 60:1768–1777CrossRefGoogle Scholar
  18. 18.
    Shen J (2012) Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: a review and synthesis of lacustrine sediment archives. Chin Sci Bull 58:17–31CrossRefGoogle Scholar
  19. 19.
    Fan M, Dettman DL, Song C et al (2007) Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: the stable isotope record. Palaeogeogr Palaeoclimatol Palaeoecol 247:313–328CrossRefGoogle Scholar
  20. 20.
    Chi Y, Fang X, Song C et al (2013) Cenozoic organic carbon isotope and pollen records from the Xining Basin, NE Tibetan Plateau, and their palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 386:436–444CrossRefGoogle Scholar
  21. 21.
    Cook CG, Jones RT, Turney CSM (2013) Catchment instability and Asian summer monsoon variability during the early Holocene in southwestern China. Boreas 42:224–235CrossRefGoogle Scholar
  22. 22.
    An Z, Clemens SC, Shen J et al (2011) Glacial-interglacial Indian summer monsoon dynamics. Science 333:719–723CrossRefGoogle Scholar
  23. 23.
    Zhang W, Ming Q, Shi Z et al (2014) Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China. PLoS One 9:e102167CrossRefGoogle Scholar
  24. 24.
    Leloup PH, Harrison TM, Ryerson FJ et al (1993) Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. J Geophys Res 98:6715CrossRefGoogle Scholar
  25. 25.
    Osozawa S, Van Vuong N, Van Tich V et al (2015) Reactivation of a collisional suture by Miocene transpressional domes associated with the Red River and Song Chay detachment faults, northern Vietnam. J Asian Earth Sci 105:252–269CrossRefGoogle Scholar
  26. 26.
    Schoenbohm LM, Burchfiel BC, Liangzhong C et al (2006) Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geol Soc Am Bull 118:672–688CrossRefGoogle Scholar
  27. 27.
    Li S, Currie BS, Rowley DB et al (2015) Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet Sci Lett 432:415–424CrossRefGoogle Scholar
  28. 28.
    Service China meteorological (2013) MAT and MAP at Wenshan station. In: National Meteorological Infomation Center. http://data.cma.gov.cn. Accessed 23 Jul 2014
  29. 29.
    Yuming Y, Kun T, He S (2008) Study on the scientific survey of Wenshan national reserve in China, 1st edn. Science Press, BeijingGoogle Scholar
  30. 30.
    Yunnan Bureau of Geology and Mineral Resources (1990) Regional geology of Yunnan Province. Geological Publishing House, BeijingGoogle Scholar
  31. 31.
    Zhang J-W, D’Rozario A, Adams JM et al (2015) Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate. Am J Bot 102:103–118CrossRefGoogle Scholar
  32. 32.
    Zijderveld JD (1967) AC demagnetization of rocks:analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Paleomagnetism. Springer, New York, pp 254–286Google Scholar
  33. 33.
    Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R Astron Soc 62:699–718CrossRefGoogle Scholar
  34. 34.
    Leng MJ, Lamb AL, Heaton THE et al (2006) Isotopes in lake water. In: Leng MJ (ed) Isot. Palaeoenvironmental Res. Springer, Dortrecht, pp 1–307CrossRefGoogle Scholar
  35. 35.
    Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments—vol II Physics, chemistry and technology. Kluwer, Dordrecht, pp 239–269Google Scholar
  36. 36.
    Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  37. 37.
    Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene Period. In: Gradstein F, Ogg JG, Schmitz MD, Ogg GM (eds) Geological Time Scale. Elsevier B.V, Amsterdam, pp 923–978CrossRefGoogle Scholar
  38. 38.
    Qi T (1992) A New species of Gigantamynodon from Yunnan Province. Vertebr Palasiat 30:229–232Google Scholar
  39. 39.
    Deng T, Wang S, Xie G et al (2011) A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull 57:261–269CrossRefGoogle Scholar
  40. 40.
    He H, Deng C, Pan Y et al (2011) New 40Ar/39Ar dating results from the Shanwang Basin, eastern China: constraints on the age of the Shanwang Formation and associated biota. Phys Earth Planet Inter 187:66–75CrossRefGoogle Scholar
  41. 41.
    He H, Sun J, Li Q et al (2012) New age determination of the Cenozoic Lunpola basin, central Tibet. Geol Mag 149:141–145CrossRefGoogle Scholar
  42. 42.
    Ciner B, Wang Y, Deng T et al (2015) Stable carbon and oxygen isotopic evidence for Late Cenozoic environmental change in Northern China. Palaeogeogr Palaeoclimatol Palaeoecol 440:750–762CrossRefGoogle Scholar
  43. 43.
    Huang Y, Clemens SC, Liu W et al (2007) Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35:531CrossRefGoogle Scholar
  44. 44.
    Cerling TE, Harris JM, Macfadden BJ et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  45. 45.
    Li S, Deng C, Yao H et al (2013) Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J Geophys Res Solid Earth 118:791–807CrossRefGoogle Scholar
  46. 46.
    Li S, Deng C, Dong W et al (2015) Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics 655:213–226CrossRefGoogle Scholar
  47. 47.
    Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214CrossRefGoogle Scholar
  48. 48.
    Melillo JM, Aber JD, Linkins AE et al (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198CrossRefGoogle Scholar
  49. 49.
    Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRefGoogle Scholar
  50. 50.
    Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  51. 51.
    O’Leary MH (1988) Carbon Isotopes in Photosynthesis-Fractionation techniques may reveal new aspects of carbon dynamics in plants. Bioscience 38:328–336CrossRefGoogle Scholar
  52. 52.
    Smith BN, Oliver J, Mc Millan C (1976) Influence of Carbon source, oxygen concentration, light intensity and temperatures on 13C/12C ratios in plant tissues. Bot Gaz 137:99–104CrossRefGoogle Scholar
  53. 53.
    Wang G, Li J, Liu X et al (2013) Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quat Sci Rev 63:83–90CrossRefGoogle Scholar
  54. 54.
    Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19691–19695CrossRefGoogle Scholar
  55. 55.
    Wang G, Han J, Liu D (2005) The carbon isotope composition of C3 herbaceous plants in loess area of northern China. Sci China Ser D Earth Sci 46:1069–1076CrossRefGoogle Scholar
  56. 56.
    Cook CG, Leng MJ, Jones RT et al (2012) Lake ecosystem dynamics and links to climate change inferred from a stable isotope and organic palaeorecord from a mountain lake in southwestern China (ca. 22.6–10.5 cal ka BP). Quat Res 77:132–137CrossRefGoogle Scholar
  57. 57.
    Xu H, Ai L, Tan L et al (2006) Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol 235:262–275CrossRefGoogle Scholar
  58. 58.
    Wan S, Kürschner WM, Clift PD et al (2009) Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophys Res Lett 36:1–5CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julie Lebreton-Anberrée
    • 1
    • 2
  • Shihu Li
    • 3
  • Shu-Feng Li
    • 1
    • 4
  • Robert A. Spicer
    • 5
  • Shi-Tao Zhang
    • 6
  • Tao Su
    • 1
  • Chenglong Deng
    • 3
  • Zhe-Kun Zhou
    • 1
    • 7
  1. 1.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
  5. 5.Environment, Earth and EcosystemsThe Open UniversityMilton KeynesUK
  6. 6.Faculty of Land Resource EngineeringKunming University of Science and TechnologyKunmingChina
  7. 7.Key Laboratory of Biogeography and Biodiversity, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina

Personalised recommendations