Science Bulletin

, Volume 61, Issue 4, pp 292–301 | Cite as

Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification

  • Jie Chen
  • Daming Zhao
  • Zhidan Diao
  • Miao Wang
  • Shaohua Shen
Article Materials Science

Abstract

The charge carrier separation and surface catalytic redox reactions are of primary importance as elementary steps in photocatalytic hydrogen evolution. In this study, both of these two processes in photocatalytic hydrogen evolution over graphitic carbon nitride (g-C3N4) were greatly promoted with the earth-abundant ferrites (Co, Ni)Fe2O4 modification. CoFe2O4 was further demonstrated to be a better modifier for g-C3N4 as compared to NiFe2O4, due to the more efficient charge carrier transfer as well as superior surface oxidative catalytic activity. When together loading CoFe2O4 and reductive hydrogen production electrocatalyst Pt onto g-C3N4, the obtained Pt/g-C3N4/CoFe2O4 photocatalyst achieved visible-light (λ > 420 nm) hydrogen production rate 3.5 times as high as Pt/g-C3N4, with the apparent quantum yield reaching 3.35 % at 420 nm.

Keywords

Graphitic carbon nitride Ferrites Photocatalytic water splitting Solar hydrogen conversion 

摘要

光生载流子分离和表面催化反应是光催化分解水制氢过程的2个主要步骤,协同提高这两步速率必然能极大促进催化剂的制氢效率。本文以g-C3N4为研究对象,通过负载铁酸盐CoFe2O4或NiFe2O4,g-C3N4的光催化制氢性能得到大幅提高。研究结果表明,(Co, Ni)Fe2O4不仅能够有效地促进g-C3N4中的光生载流子的分离,而且能够有效地促进表面催化氧化半反应;与此同时,负载Pt作为产氢助催化剂,能促进表面催化还原产氢半反应。在光催化反应中,g-C3N4中的光生电子和空穴分别流向Pt和(Co, Ni)Fe2O4,电子在Pt上还原反应产生氢气,而空穴转移到(Co, Ni)Fe2O4上与牺牲剂反应。进一步研究结果发现,CoFe2O4对g-C3N4的载流子分离与氧化半反应催化效果均优于NiFe2O4。通过CoFe2O4和Pt共负载,Pt/g-C3N4/CoFe2O4光催化剂的催化制氢量子效率在420 nm处达到3.35 %,在可见光区(λ > 420 nm)的光催化制氢速率是未负载铁酸盐的Pt/g-C3N4的3.5倍。

Supplementary material

11434_2016_995_MOESM1_ESM.doc (12.5 mb)
Supplementary material 1 (DOC 12801 kb)

References

  1. 1.
    Fujishima A, Honda K (1972) Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Chen XB, Shen SH, Guo LJ et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  3. 3.
    Yue D, Qian X, Zhao Y (2015) Photocatalytic remediation of ionic pollutant. Sci Bull 60:1791–1806CrossRefGoogle Scholar
  4. 4.
    Xia Z, Zhou X, Li J et al (2015) Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Sci Bull 60:1395–1402CrossRefGoogle Scholar
  5. 5.
    Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  6. 6.
    Zhang GG, Zhang MW, Ye XX et al (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805–809CrossRefGoogle Scholar
  7. 7.
    Liu J, Wang HQ, Chen ZP et al (2015) Microcontact printing assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv Mater 27:712–718CrossRefGoogle Scholar
  8. 8.
    Chen J, Shen SH, Guo PH et al (2014) Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. J Mater Chem A 2:4605–4612CrossRefGoogle Scholar
  9. 9.
    Xu L, Huang WQ, Wang LL et al (2015) Insights into enhanced visible-Light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chem Mater 27:1612–1621CrossRefGoogle Scholar
  10. 10.
    Ma XG, Lv YH, Xu J et al (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116:23485–23493CrossRefGoogle Scholar
  11. 11.
    Liu G, Niu P, Sun CH et al (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648CrossRefGoogle Scholar
  12. 12.
    Chen J, Shen SH, Guo PH et al (2014) In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl Catal B Environ 152–153:335–341CrossRefGoogle Scholar
  13. 13.
    Chen J, Shen SH, Wu P et al (2015) Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem 17:509–517CrossRefGoogle Scholar
  14. 14.
    Yan HJ, Yang HX (2011) TiO2/g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloy Compd 509:26–29CrossRefGoogle Scholar
  15. 15.
    Zhu YP, Li M, Liu YL et al (2014) Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118:10963–10971CrossRefGoogle Scholar
  16. 16.
    Wang YJ, Shi R, Lin J et al (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRefGoogle Scholar
  17. 17.
    Zhou XS, Jin B, Li LD et al (2012) A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J Mater Chem 22:17900–17905CrossRefGoogle Scholar
  18. 18.
    Yan SC, Lv SB, Li ZS et al (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRefGoogle Scholar
  19. 19.
    Hu S, Xiang CX, Haussener S et al (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993CrossRefGoogle Scholar
  20. 20.
    Zhang K, Kim WJ, Ma M et al (2015) Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J Mater Chem A 3:4803–4810CrossRefGoogle Scholar
  21. 21.
    Wang XC, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606CrossRefGoogle Scholar
  22. 22.
    Maeda K, Wang XC, Nishihara Y et al (2009) Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C 113:4940–4947CrossRefGoogle Scholar
  23. 23.
    Hou YD, Laursen AB, Zhang JS et al (2013) Layered nanojunctions for hydrogen evolution catalysis. Angew Chem Int Ed 52:3621–3625CrossRefGoogle Scholar
  24. 24.
    Li M, Xiong YP, Liu T et al (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930CrossRefGoogle Scholar
  25. 25.
    Shi YQ, Zhou KQ, Wang BB et al (2014) Ternary graphene-CoFe2O4/CdS nanohybrids: preparation and application as recyclable photocatalysts. J Mater Chem A 2:535–544CrossRefGoogle Scholar
  26. 26.
    Sathishkumar P, Mangalaraj RV, Anandan S et al (2013) CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem Eng J 220:302–310CrossRefGoogle Scholar
  27. 27.
    Xu SH, Feng DL, Li DX et al (2008) Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin J Chem 26:842–846CrossRefGoogle Scholar
  28. 28.
    Hong DC, Yamada Y, Sheehan M et al (2014) Mesoporous nickel ferrites with spinel structure prepared by an aerosol spray pyrolysis method for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 2:2588–2594CrossRefGoogle Scholar
  29. 29.
    Al-Hoshan MS, Singh JP, Al-Mayouf AM et al (2012) Synthesis, physicochemical and electrochemical properties of nickel ferrite spinels obtained by hydrothermal method for the oxygen evolution reaction (OER). Int J Electrochem Sci 7:4959–4973Google Scholar
  30. 30.
    Liu SS, Bian WY, Yang ZR et al (2014) A facile synthesis of CoFe2O4/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction. J Mater Chem A 2:18012–18017CrossRefGoogle Scholar
  31. 31.
    Xu YJ, Bian WY, Wu J et al (2015) Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction. Electrochim Acta 151:276–283CrossRefGoogle Scholar
  32. 32.
    Cannas C, Falqui A, Musinu A et al (2006) CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties. J Nanopart Res 8:255–267CrossRefGoogle Scholar
  33. 33.
    Zhu B, Yang CT, Xie QT et al (2013) Influence of rapid thermal annealing on the structure and magnetic properties of CoFe2O4 films prepared by sol-gel method. Ferroelectrics 445:18–25CrossRefGoogle Scholar
  34. 34.
    Montemayor SM, Garcia-Cerda LA, Torres-Lubian JR et al (2007) Comparative study of the synthesis of CoFe2O4 and NiFe2O4 in silica through the polymerized complex route of the sol-gel method. J Sol Gel Sci Technol 42:181–186CrossRefGoogle Scholar
  35. 35.
    Azadmanjiri J, Seyyed SAS (2004) Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol-gel autocombustion method. Phys Stat Sol 12:3414–3417CrossRefGoogle Scholar
  36. 36.
    Li YB, Zhang HM, Liu PR et al (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344Google Scholar
  37. 37.
    Sun JW, Fu YS, Xiong P et al (2013) A magnetically separable P25/CoFe2O4/graphene catalyst with enhanced adsorption capacity and visible-light-driven photocatalytic activity. RSC Adv 3:22490–22497CrossRefGoogle Scholar
  38. 38.
    Zhang JL, Fu JC, Tan GG et al (2012) Nanoscale characterization and magnetic reversal mechanism investigation of electrospun NiFe2O4 multi-particle-chain nanofibres. Nanoscale 4:2754–2759CrossRefGoogle Scholar
  39. 39.
    Lin XP, Xing JC, Wang WD et al (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293CrossRefGoogle Scholar
  40. 40.
    Holmes MA, Townsend TK, Osterloh FE et al (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48:371–373CrossRefGoogle Scholar
  41. 41.
    Choi JJ, Lim YF, Santiago-Berrios MB et al (2009) PbSe nanocrystal excitonic solar cells. Nano Lett 9:3749–3755CrossRefGoogle Scholar
  42. 42.
    Yang XG, Du C, Liu R et al (2013) Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: a case study of the hematite/MnOx combination. J Catal 304:86–91CrossRefGoogle Scholar
  43. 43.
    Mao S, Wen ZH, Huang TZ et al (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7:609–616CrossRefGoogle Scholar
  44. 44.
    Ding Q, Meng F, English CR et al (2014) Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J Am Chem Soc 136:8504–8507CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jie Chen
    • 1
  • Daming Zhao
    • 1
  • Zhidan Diao
    • 1
  • Miao Wang
    • 1
  • Shaohua Shen
    • 1
  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations