Skip to main content
Log in

Method for improving illumination instability of organic–inorganic halide perovskite solar cells

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

Organohalogen perovskites are attracting considerable attention for use in solar cells. However, the stability of these devices will determine whether they can be made commercially viable. Device encapsulation or the use of a hydrophobic hole-transporting material can prevent the permeation of water into the perovskite layer and enhance the humidity stability of the cells under dark conditions. With regard to the light stability of solar cells, recent studies have yielded contradictory results. This work investigated the degradation mechanism of perovskite solar cells under illumination. Further, a simple method was proposed for improving their illumination stability. Amino acids were inserted between the compact TiO2 layer and the perovskite layer to effectively prevent the decomposition of the perovskite layer owing to the superoxide anions and hydroxyl radicals generated under illumination from the H2O and O2 adsorbed onto the TiO2 layer.

摘要

有机/无机杂化钙钛矿材料因在太阳能电池中的使用而备受关注。目前电池的稳定性是决定其产业化的关键问题。钙钛矿太阳能电池通过封装或利用疏水空穴传输层来避免钙钛矿材料与水接触,从而提高无光照下电池的稳定性。但对于钙钛矿电池的光照稳定性,最新研究结果存在互相矛盾之处。本文研究了光照下有机/无机杂化钙钛矿材料的分解机理,并提出了一个简单的方法来提高钙钛矿电池的光照稳定性,即在致密二氧化钛层和钙钛矿层中间引入氨基酸盐酸盐。研究结果表明,二氧化钛表面吸附的少量水、氧在光照下会产生超氧阴离子和氢氧自由基,氨基酸盐酸盐的引入避免了钙钛矿层与TiO2层接触而发生分解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang WS, Noh JH, Jeon NJ et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237

    Article  Google Scholar 

  2. Jeon NJ, Lee HG, Kim YC et al (2014) o-Methoxy substituents in spiro–OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J Am Chem Soc 136:7837–7840

    Article  Google Scholar 

  3. Zhou H, Chen Q, Li G et al (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  Google Scholar 

  4. Ryu S, Noh JH, Jeon NJ et al (2014) Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci 7:2614–2618

    Article  Google Scholar 

  5. Wojciechowski K, Saliba M, Leijtens T et al (2014) Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci 7:1142–1147

    Article  Google Scholar 

  6. Liu D, Kelly TL (2014) Perovskite solar cells with a planar hetero junction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138

    Article  Google Scholar 

  7. Wang JTW, Ball JM, Barea EM et al (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730

    Article  Google Scholar 

  8. Wang JTW, Ball JM, Barea EM et al (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:724–730

    Google Scholar 

  9. Wang Q, Chen H, Liu G et al (2015) Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Sci Bull 60:405–418

    Article  Google Scholar 

  10. Zhang WH, Cai B (2014) Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Chin Sci Bull 59:2092–2101

    Article  Google Scholar 

  11. Dong X, Fang X, Lv M et al (2015) Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A 3:5360–5367

    Article  Google Scholar 

  12. Leijtens T, Eperon GE, Pathak S et al (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4:2883

    Article  Google Scholar 

  13. Kwon YS, Lim J, Yun HJ et al (2014) A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ Sci 7:1454–1460

    Article  Google Scholar 

  14. Niu G, Li W, Meng F et al (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2:705–710

    Article  Google Scholar 

  15. Habisreutinger SN, Leijtens T, Eperon GE et al (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568

    Article  Google Scholar 

  16. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  17. Mei A, Li X, Liu L et al (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298

    Article  Google Scholar 

  18. Pathak SK, Abate A, Leijtens T et al (2014) Towards long-term photostability of solid-state dye sensitized solar cells. Adv. Energy Mater 4:1301667

    Article  Google Scholar 

  19. Ogomi Y, Morita A, Tsukamoto S et al (2014) All-solid perovskite solar cells with HOCO–R–NH3 +I anchor-group inserted between porous titania and perovskite. J Phys Chem C 118:16651–16659

    Article  Google Scholar 

  20. Rong Y, Ku Z, Mei A et al (2014) Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 hetero junction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett 5:2160–2164

    Article  Google Scholar 

  21. Ke W, Fang G, Wang J et al (2014) Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces 6:15959–15965

    Article  Google Scholar 

  22. Liu D, Yang J, Kelly TL (2014) Compact layer free perovskite solar cells with 13.5 % efficiency. J Am Chem Soc 136:17116–17122

    Article  Google Scholar 

  23. Li Z, Kulkarni SA, Boix PP et al (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797–6804

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51272033, 51572037, and 51335002), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJA430001 and EEKJA480002).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningyi Yuan or Jianning Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 515 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Fang, X., Lv, M. et al. Method for improving illumination instability of organic–inorganic halide perovskite solar cells. Sci. Bull. 61, 236–244 (2016). https://doi.org/10.1007/s11434-016-0994-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-0994-1

Keywords

Navigation