Science Bulletin

, Volume 61, Issue 2, pp 163–171 | Cite as

Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator

  • Tongcang LiEmail author
  • Zhang-Qi Yin
Article Physics & Astronomy


Schrödinger’s thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straightforward method to create quantum superposition states of a living microorganism by putting a small cryopreserved bacterium on top of an electromechanical oscillator. Our proposal is based on recent developments that the center-of-mass oscillation of a 15-μm-diameter aluminum membrane has been cooled to its quantum ground state (Teufel et al. in Nature 475:359, 2011), and entangled with a microwave field (Palomaki et al. in Science 342:710, 2013). A microorganism with a mass much smaller than the mass of the electromechanical membrane will not significantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with the membrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. More importantly, the internal states of a microorganism, such as the electron spin of a glycine radical, can be entangled with its center-of-mass motion and teleported to a remote microorganism. Our proposal can be realized with state-of-the-art technologies. The proposed setup is a quantum-limited magnetic resonance force microscope. Since internal states of an organism contain information, our proposal also provides a scheme for teleporting information or memories between two remote organisms.


Quantum superposition Quantum entanglement Quantum teleportation Schrödinger's cat Electromechanical Oscillator Cryopreserved microorganism 


薛定谔猫的假想实验展示了量子力学的奇异性质并引起了广泛兴趣.我们提出把一个低温冷冻保存的微生物放在一个电机械振子上来实现活体微生物的量子态叠加, 纠缠和隐形传态. 目前,实验上已经把一个直径15微米的电机械振子的质心运动冷却到量子基态[Nature 475:359 (2011)], 并和微波光子纠缠[Science 342: 710 (2013)]. 把一个质量远小于电机械振子的微生物放在振子上面不会对它的性质和量子操控造成显著影响. 这个微生物可以和振子共同冷却到量子基态并制备到叠加态. 利用一个强磁场梯度,微生物的内部状态(比如甘氨酸自由基的电子自旋)可以和微生物的质心运动纠缠, 并被量子隐形传态到另外一个微生物. 因为微生物的内部状态包含信息, 这个方案能实现两个微生物之间信息和记忆的量子隐形传态.这篇论文也提供了一个达到量子极限的磁共振力学显微镜方案



TL would like to thank the support from Purdue University and helpful discussions with G. Csathy, F. Robicheaux, C. Greene, and V. Shalaev. ZQY is funded by the National Basic Research Program of China (2011CBA00300 and 2011CBA00302) and the National Natural Science Foundation of China (11105136, 11474177 and 61435007). ZQY would like to thank the useful discussion with Lei Zhang.

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Schrödinger E (1935) Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23:807–812CrossRefGoogle Scholar
  2. 2.
    Schrödinger E (1935) Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23:823–828CrossRefGoogle Scholar
  3. 3.
    Schrödinger E (1935) Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23:844–849CrossRefGoogle Scholar
  4. 4.
    Wineland DJ (2013) Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev Mod Phys 85:1103–1114CrossRefGoogle Scholar
  5. 5.
    Everett H (1957) Relative state formulation of quantum mechanics. Rev Mod Phys 29:454–462CrossRefGoogle Scholar
  6. 6.
    DeWitt BS (1970) Quantum mechanics and reality. Phys Today 23:155–167CrossRefGoogle Scholar
  7. 7.
    Penrose R (1996) On gravity’s role in quantum state reduction. Gen Rel Grav 28:581–600CrossRefGoogle Scholar
  8. 8.
    Diósi L (1989) Models for universal reduction of macroscopic quantum fluctuations. Phys Rev A 40:1165–1174CrossRefGoogle Scholar
  9. 9.
    Ghirardi GC, Rimini A, Weber T (1986) Unified dynamics for microscopic and macroscopic systems. Phys Rev D 34:470–491CrossRefGoogle Scholar
  10. 10.
    Bassi A, Lochan K, Satin S et al (2013) Models of wave-function collapse, underlying theories, and experimental tests. Rev Mod Phys 85:471–527CrossRefGoogle Scholar
  11. 11.
    Hornberger K, Gerlich S, Haslinger P et al (2012) Quantum interference of clusters and molecules. Rev Mod Phys 84:157–173CrossRefGoogle Scholar
  12. 12.
    Brixner T, Stenger J, Vaswani HM et al (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–628CrossRefGoogle Scholar
  13. 13.
    Engel GS, Calhoun TR, Read EL et al (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786CrossRefGoogle Scholar
  14. 14.
    Aspelmeyer M, Kippenberg TJ, Marquardt F (2014) Cavity optomechanics. Rev Mod Phys 86:1391–1452CrossRefGoogle Scholar
  15. 15.
    Chang DE, Regal CA, Papp SB et al (2010) Cavity opto-mechanics using an optically levitated nanosphere. Proc Natl Acad Sci USA 107:1005–1010CrossRefGoogle Scholar
  16. 16.
    Yin Z-Q, Geraci AA, Li T (2013) Optomechanics of levitated dielectric particles. Int J Mod Phys B 27:1330018CrossRefGoogle Scholar
  17. 17.
    Chan J, Alegre TPM, Safavi-Naeini AH et al (2011) Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478:89–92CrossRefGoogle Scholar
  18. 18.
    O’Connell AD, Hofheinz M, Ansmann M et al (2010) Quantum ground state and single-phonon control of a mechanical resonator. Nature 464:697–703CrossRefGoogle Scholar
  19. 19.
    Teufel JD, Donner T, Li D et al (2011) Sideband cooling of micromechanical motion to the quantum ground state. Nature 475:359–363CrossRefGoogle Scholar
  20. 20.
    Palomaki TA, Teufel JD, Simmonds RW et al (2013) Entangling mechanical motion with microwave fields. Science 342:710–713CrossRefGoogle Scholar
  21. 21.
    Palomaki TA, Harlow JW, Teufel JD et al (2013) Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495:210–214CrossRefGoogle Scholar
  22. 22.
    Suh J, Shaw MD, LeDuc HG et al (2012) Thermally induced parametric instability in a back-action evading measurement of a micromechanical quadrature near the zero-point level. Nano Lett 12:6260–6265CrossRefGoogle Scholar
  23. 23.
    Suh J, Weinstein AJ, Lei CU et al (2014) Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344:1262–1265CrossRefGoogle Scholar
  24. 24.
    Wollman EE, Lei CU, Weinstein AJ et al (2015) Quantum squeezing of motion in a mechanical resonator. Science 349:952–955CrossRefGoogle Scholar
  25. 25.
    Pirkkalainen JM, Damskägg E, Brandt M et al. (2015) Squeezing of quantum noise of motion in a micromechanical resonator. arXiv:1507.04209
  26. 26.
    Nimmrichter S, Hornberger K (2013) Macroscopicity of mechanical quantum superposition states. Phys Rev Lett 110:160403CrossRefGoogle Scholar
  27. 27.
    Romero-Isart O, Juan ML, Quidant R et al (2010) Towards quantum superposition of living organisms. New J Phys 12:033015CrossRefGoogle Scholar
  28. 28.
    Schrödinger E (2012) What is life?: with mind and matter and autobiographical sketches. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. 29.
    Bull JW, Gordon A (2015) Schrödinger’s microbe: implications of coercing a living organism into a coherent quantum mechanical state. Biol Philos. doi: 10.1007/s10539-015-9500-4 Google Scholar
  30. 30.
    Li T, Kheifets S, Medellin D et al (2010) Measurement of the instantaneous velocity of a Brownian particle. Science 328:1673–1675CrossRefGoogle Scholar
  31. 31.
    Li T, Kheifets S, Raizen MG (2011) Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys 7:527–530CrossRefGoogle Scholar
  32. 32.
    Gieseler J, Deutsch B, Quidant R et al (2012) Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett 109:103603CrossRefGoogle Scholar
  33. 33.
    Kiesel N, Blaser F, Delic U et al (2013) Cavity cooling of an optically levitated submicron particle. Proc Natl Acad Sci USA 110:14180–14185CrossRefGoogle Scholar
  34. 34.
    Asenbaum P, Kuhn S, Nimmrichter S et al (2013) Cavity cooling of free silicon nanoparticles in high-vacuum. Nat Commun 4:2743CrossRefGoogle Scholar
  35. 35.
    Millen J, Fonseca PZG, Mavrogordatos T et al (2015) Cavity cooling a single charged levitated nanosphere. Phys Rev Lett 114:123602CrossRefGoogle Scholar
  36. 36.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37CrossRefGoogle Scholar
  37. 37.
    Fisher MPA (2015) Quantum cognition: the possibility of processing with nuclear spins in the brain. arXiv:1508.05929
  38. 38.
    Steffen L, Salathe Y, Oppliger M et al (2013) Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500:319–322CrossRefGoogle Scholar
  39. 39.
    Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125Google Scholar
  40. 40.
    Norman MC, Franck EB, Choate RV (1970) Preservation of mycoplasma strains by freezing in liquid nitrogen and by lyophilization with sucrose. Appl Microbiol 20:69–71Google Scholar
  41. 41.
    Fahy GM, Wowk B, Wu J et al (2004) Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 48:157–158CrossRefGoogle Scholar
  42. 42.
    Hoffmann SK, Gramza M, Hilczer W (1995) Molecular dynamics of diglycine nitrate studied by phase memory relaxation time of glycine radical. Ferroelectrics 172:431–435CrossRefGoogle Scholar
  43. 43.
    Zhou X, Cegelski L (2012) Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state nmr spectroscopy. Biochemistry 51:8143–8153CrossRefGoogle Scholar
  44. 44.
    Degen CL, Poggio M, Mamin HJ et al (2009) Nanoscale magnetic resonance imaging. Proc Natl Acad Sci USA 106:1313–1317CrossRefGoogle Scholar
  45. 45.
    Adrian M, Dubochet J, Lepault J et al (1984) Cryo-electron microscopy of viruses. Nature 308:32–36CrossRefGoogle Scholar
  46. 46.
    Spirin AS (2002) Ribosomes. Kluwer Academic Publishers, New York Chapter 16, Page 320Google Scholar
  47. 47.
    Fuerstenau SD, Benner WH, Thomas JJ et al (2001) Mass spectrometry of an intact virus. Angew Chem Int Ed 40:542–544CrossRefGoogle Scholar
  48. 48.
    Ruigrok RW, Andree PJ, Hooft van Huysduynen RA et al (1984) Characterization of three highly purified influenza virus strains by electron microscopy. J Gen Virol 65:799–802CrossRefGoogle Scholar
  49. 49.
    Luef B, Frischkorn KR, Wrighton KC et al (2015) Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 6:6372CrossRefGoogle Scholar
  50. 50.
    Zhao H, Dreses-Werringloer U, Davies P et al (2008) Amyloid-beta peptide degradation in cell cultures by mycoplasma contaminants. BMC Res Notes 1:38CrossRefGoogle Scholar
  51. 51.
    Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106Google Scholar
  52. 52.
    Neidhardt FC (1999) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, New YorkGoogle Scholar
  53. 53.
    Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 110:9824–9829CrossRefGoogle Scholar
  54. 54.
    King GM, Schürmann G, Branton D et al (2005) Nanometer patterning with ice. Nano Lett 5:1157–1160CrossRefGoogle Scholar
  55. 55.
    Heim LO, Blum J, Preuss M et al (1999) Adhesion and friction forces between spherical micrometer-sized particles. Phys Rev Lett 83:3328CrossRefGoogle Scholar
  56. 56.
    Proft T, Baker EN (2009) Pili in Gram-negative and Gram-positive bacteria -structure, assembly and their role in disease. Cell Mol Life Sci 66:613–635CrossRefGoogle Scholar
  57. 57.
    Yin ZQ, Yang WL, Sun L et al (2015) Quantum network of superconducting qubits through an optomechanical interface. Phys Rev A 91:012333CrossRefGoogle Scholar
  58. 58.
    Wilson-Rae I, Nooshi N, Zwerger W et al (2007) Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys Rev Lett 99:093901CrossRefGoogle Scholar
  59. 59.
    Marquardt F, Chen JP, Clerk AA et al (2007) Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys Rev Lett 99:093902CrossRefGoogle Scholar
  60. 60.
    Bennett CH, Brassard G, Crépeau C et al (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett 70:1895CrossRefGoogle Scholar
  61. 61.
    de Lange G, Wang ZH, Ristè D et al (2010) Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330:60–63CrossRefGoogle Scholar
  62. 62.
    Rugar D, Budakian R, Mamin HJ et al (2004) Single spin detection by magnetic resonance force microscopy. Nature 430:329–332CrossRefGoogle Scholar
  63. 63.
    Vinante A, Wijts G, Usenko O et al (2011) Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures. Nat Commun 2:572CrossRefGoogle Scholar
  64. 64.
    Rabl P, Cappellaro P, Dutt MVG et al (2009) Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys Rev B 79:041302(R)CrossRefGoogle Scholar
  65. 65.
    Cai JM, Jelezko F, Plenio MB et al (2013) Diamond based single molecule magnetic resonance spectroscopy. New J Phys 15:013020CrossRefGoogle Scholar
  66. 66.
    Lecocq F, Clark JB, Simmonds RW et al (2015) Quantum nondemolition measurement of a nonclassical state of a massive object. arXiv:1509.01629
  67. 67.
    Yin ZQ, Li T, Zhang X et al (2013) Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys Rev A 88:033614CrossRefGoogle Scholar
  68. 68.
    Yin ZQ, Zhao N, Li T (2015) Hybrid opto-mechanical systems with nitrogen-vacancy centers. Sci China Phys Mech Astron 58:050303CrossRefGoogle Scholar
  69. 69.
    Romero-Isart O, Clemente L, Navau C et al (2012) Quantum magnetomechanics with levitating superconducting microspheres. Phys Rev Lett 109:147205CrossRefGoogle Scholar
  70. 70.
    Cirio M, Brennen GK, Twamley J (2012) Quantum magnetomechanics: ultrahigh-q-levitated mechanical oscillators. Phys Rev Lett 109:147206CrossRefGoogle Scholar
  71. 71.
    Geim AK, Berry MV (1997) Of flying frogs and levitrons. Eur J Phys 18:307CrossRefGoogle Scholar
  72. 72.
    Heilmann R, Gräfe M, Nolte S et al (2015) A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull 60:96–100CrossRefGoogle Scholar
  73. 73.
    Sheng YB, Deng FG, Long GL (2010) Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A 82:032318CrossRefGoogle Scholar
  74. 74.
    Wang XL, Cai XD, Su ZE et al (2015) Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518:516–519CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  4. 4.Purdue Quantum CenterPurdue UniversityWest LafayetteUSA
  5. 5.Center for Quantum Information, Institute of Interdisciplinary Information SciencesTsinghua UniversityBeijingChina

Personalised recommendations