Skip to main content

Superconducting nanowire single-photon detectors: recent progress

Abstract

Research of superconducting nanowire single-photon detectors (SNSPDs) has been progressing rapidly in recent years. The combined properties of high efficiency, low noise, and fast speed of SNSPDs permit its applications ranging from long-distance quantum teleportation to moon-to-earth optical communications. Here we briefly discussed recent progress of SNSPDs, in particular (1) tungsten-silicide SNSPDs, (2) waveguide-integrated SNSPDs, and (3) a few applied demonstrations.

摘要

超导纳米线单光子探测器这一研究领域进展迅速。此种探测器同时具有效率高、噪声低、速度快的特性, 在长距离量子隐态传输、月地光通信方面皆有应用。我们简短评述超导纳米线单光子探测器的最新进, 尤其是 (1)硅化钨超导纳米线单光子探测器、(2)波导集成的超导纳米线单光子探测器、(3)一些应用展示。

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gol’tsman GN, Okunev O, Chulkova G et al (2001) Picosecond superconducting single-photon optical detector. Appl Phys Lett 79:705–707

    Article  Google Scholar 

  2. 2.

    Marsili F, Verma VB, Stern JA et al (2013) Detecting single infrared photons with 93 % system efficiency. Nat Photon 7:210–214

    Article  Google Scholar 

  3. 3.

    Kerman AJ, Rosenberg D, Molnar RJ et al (2013) Readout of superconducting nanowire single-photon detectors at high count rates. J Appl Phys 113:144511

    Article  Google Scholar 

  4. 4.

    Zhao Q, Jia T, Gu M et al (2014) Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits. Opt Lett 39:1869–1872

    Article  Google Scholar 

  5. 5.

    You L, Yang X, He Y et al (2013) Jitter analysis of a superconducting nanowire single photon detector. AIP Adv 3:072135

    Article  Google Scholar 

  6. 6.

    Mattioli F, Zhou Z, Gaggero A et al (2015) Series-nanowire photon number resolving detector counting up to 24 photons. In: Conference on lasers and electro-optics, STh1I.3

  7. 7.

    Allman MS, Verma VB, Stevens M et al (2015) A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl Phys Lett 106:192601

    Article  Google Scholar 

  8. 8.

    Marsili F, Bellei F, Najafi F et al (2012) Efficient single photon detection from 500 nm to 5 μm wavelength. Nano Lett 12:4799–4804

    Article  Google Scholar 

  9. 9.

    Miki S, Yamashita T, Terai H et al (2013) High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt Express 21:10208–10214

    Article  Google Scholar 

  10. 10.

    Beyer AD, Shaw MD, Marsili F et al (2015) Tungsten silicide superconducting nanowire single-photon test structures fabricated using optical lithography. IEEE Trans Appl Supercond 25:1–5

    Article  Google Scholar 

  11. 11.

    Marsili F, Najafi F, Dauler EA et al (2011) Single-photon detectors based on ultranarrow superconducting nanowires. Nano lett 11:2048–2053

    Article  Google Scholar 

  12. 12.

    Kerman AJ, Dauler EA, Yang JKW et al (2007) Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl Phys Lett 90:101110

    Article  Google Scholar 

  13. 13.

    Ejrnaes M, Cristiano R, Quaranta O et al (2007) A cascade switching superconducting single photon detector. Appl Phys Lett 91:262509

    Article  Google Scholar 

  14. 14.

    Zhao Q, McCaughan AN, Dane AE et al (2014) Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture. Opt Express 22:24574–24581

    Article  Google Scholar 

  15. 15.

    Divochiy A, Marsili F, Bitauld D et al (2008) Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat Photon 2:302–306

    Article  Google Scholar 

  16. 16.

    Rosfjord KM, Yang JKW, Dauler EA et al (2006) Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express 14:527534

    Article  Google Scholar 

  17. 17.

    Hu X, Holzwarth CW, Masciarelli D et al (2009) Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans Appl Supercond 19:336–340

    Article  Google Scholar 

  18. 18.

    Hu X, Dauler EA, Molnar RJ et al (2011) Superconducting nanowire single-photon detectors integrated with optical nano-antennae. Opt Express 19:17–31

    Article  Google Scholar 

  19. 19.

    Sprengers JP, Gaggero A, Sahin D et al (2011) Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl Phys Lett 99:181110

    Article  Google Scholar 

  20. 20.

    Pernice WHP, Schuck C, Minaeva O et al (2012) High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun 3:1325

    Article  Google Scholar 

  21. 21.

    Najafi F, Mower J, Harris N et al (2015) On-chip detection of nonclassical light by scalable integration of single-photon detectors. Nat Commun 6:5873

    Article  Google Scholar 

  22. 22.

    Akhlaghi MK, Schelew E, Young JF et al (2015) Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat Commun 6:9233

    Article  Google Scholar 

  23. 23.

    Dorenbos SN, Reiger EM, Akopian N et al (2008) Superconducting single photon detectors with minimized polarization dependence. Appl Phys Lett 93:161102

    Article  Google Scholar 

  24. 24.

    Gu C, Cheng Y, Zhu X et al (2015) Fractal-inspired, polarization-insensitive superconducting nanowire single-photon detectors. In: Photonic networks and devices, OSA, JM3A.10

  25. 25.

    Guo Q, Li H, You LX et al (2015) Single photon detector with high polarization sensitivity. Sci Rep 5:9616

    Article  Google Scholar 

  26. 26.

    Zhang LB, Wan C, Gu M et al (2015) Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors. Sci Bull 60:1434–1438

    Article  Google Scholar 

  27. 27.

    Yang JK, Kerman AJ, Dauler EA et al (2007) Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans Appl Supercond 17:581–585

    Article  Google Scholar 

  28. 28.

    Renema JJ, Gaudio R, Wang Q et al (2014) Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys Rev Lett 112:117604

    Article  Google Scholar 

  29. 29.

    Jia T, Wan C, Zhao L et al (2014) Temperature dependence of niobium superconducting nanowire single-photon detectors in He-3 cryocooler. Chin Sci Bull 59:3549–3533

    Article  Google Scholar 

  30. 30.

    Murphy A, Semenov A, Korneev A et al (2015) Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts. Sci Rep 5:10174

    Article  Google Scholar 

  31. 31.

    Zhao Q, Zhang L, Jia T et al (2011) Intrinsic timing jitter of superconducting nanowire single-photon detectors. Appl Phys B 104:673–678

    Article  Google Scholar 

  32. 32.

    Natarajan CM, Tanner MG, Hadfield RH (2012) Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Tech 25:063001

    Article  Google Scholar 

  33. 33.

    You LX (2014) Recent progress on superconducting nanowire single photon detector. Sci Sin Inform 44:370–388 (in Chinese)

    Article  Google Scholar 

  34. 34.

    Hadfield RH (2009) Single-photon detectors for optical quantum information applications. Nat Photon 3:696–705

    Article  Google Scholar 

  35. 35.

    Dauler EA, Grein ME, Kerman AJ et al (2014) Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt Eng 53:081907

    Article  Google Scholar 

  36. 36.

    Baek B, Lita AE, Verma V et al (2011) Superconducting \(\alpha -{\rm{W}}_{ {x}}{\rm{Si}}_{1-{ {x}}}\) nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl Phys Lett 98:251105

    Article  Google Scholar 

  37. 37.

    Zhang J, Boiadjieva N, Chulkova G et al (2003) Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors. Electron Lett 39:1086–1088

    Article  Google Scholar 

  38. 38.

    Zhong T, Hu X, Wong FNC et al (2010) High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength. Opt Lett 35:1392–1394

    Article  Google Scholar 

  39. 39.

    Hadfield RH, Habif JL, Schlafer J et al (2006) Quantum key distribution at 1550 nm with twin superconducting single-photon detectors. Appl Phys lett 89:241129

    Article  Google Scholar 

  40. 40.

    Gemmell NR, McCarthy A, Liu B et al (2013) Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt Express 21:5005–5013

    Article  Google Scholar 

  41. 41.

    Rosticher M, Ladan FR, Maneval JP et al (2010) A high efficiency superconducting nanowire single electron detector. Appl Phys Lett 97:183106

    Article  Google Scholar 

  42. 42.

    Azzouz H, Dorenbos SN, Vries DE et al (2012) Efficient single particle detection with a superconducting nanowire. AIP Adv 2:032124

    Article  Google Scholar 

  43. 43.

    Zhao Q, Xia L, Wan C et al (2015) Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors. Sci Rep 5:10441

    Article  Google Scholar 

  44. 44.

    Takesue H, Dyer SD, Stevens MJ et al (2015) Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2:832–835

    Article  Google Scholar 

  45. 45.

    Khatri FI, Robinson BS, Semprucci MD et al (2015) Lunar Laser Communication Demonstration operations architecture. Acta Astron 111:77–83

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61505141 and 11527808) and the National Thousand Talents Plan for Young Professionals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Cheng, Y., Gu, C. et al. Superconducting nanowire single-photon detectors: recent progress. Sci. Bull. 60, 1980–1983 (2015). https://doi.org/10.1007/s11434-015-0960-3

Download citation

Keywords

  • Superconducting nanowire single-photon detectors
  • Quantum optics
  • Nanowire
  • Superconducting devices

关键词

  • 超导纳米线单光子探测器
  • 量子光学
  • 纳米线
  • 超导器件