Skip to main content
Log in

Smartphones for sensing

  • Progress
  • Chemistry
  • Published:
Science Bulletin

Abstract

Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smartphones, as the most popular state-of-art mobile device, have remarkable potential for sensing applications. A growing set of physical-co-chemical sensors have been embedded; these include accelerometers, microphones, cameras, gyroscopes, and GPS units to access and perform data analysis. In this review, we discuss recent work focusing on smartphone sensing including representative electromagnetic, audio frequency, optical, and electrochemical sensors. The development of these capabilities will lead to more compact, lightweight, cost-effective, flexible, and durable devices in terms of their performances.

摘要

简单便携的分析设备正走进我们生活的各个方面,如个人保健、医疗分析、食品安全以及环境监测。智能手机作为最普及的移动设备在分析测试方面最具潜力,现代手机带有越来越多的传感器:加速计、麦克风、摄像头、陀螺仪、定位器等可以方便地获得更多数据和信息。本文综述了移动设备在分析传感方面的应用,包括电磁传感、音频传感、光学传感以及电化学传感等,并总结了该领域的发展趋势。未来的移动传感设备会更加小巧、轻便、便宜、耐用且易携带。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lane ND, Miluzzo H, Lu H et al (2010) A survey of mobile phone sensing. IEEE Commun Mag 48:140–150

    Article  Google Scholar 

  2. Khan WZ, Xiang Y, Aalsalem MY et al (2013) Mobile phone sensing systems: a survey. IEEE Commun Surv Tutor 15:402–427

    Article  Google Scholar 

  3. Capitan-Vallvey LF, Palma AJ (2011) Recent developments in handheld and portable optosensing—a review. Anal Chim Acta 696:27–46

    Article  Google Scholar 

  4. Williams AJ, Ekins S, Clark AM et al (2011) Mobile apps for chemistry in the world of drug discovery. Drug Discov Today 16:928–939

    Article  Google Scholar 

  5. Daponte P, De Vito L, Picariello F et al (2013) State of the art and future developments of measurement applications on smartphones. Measurement 46:3291–3307

    Article  Google Scholar 

  6. Guo BY, Zeng T, Wu HC (2015) Recent advances of DNA sequencing via nanopore-based technologies. Sci Bull 60:287–295

    Article  Google Scholar 

  7. Liang F, Zhang P (2015) Nanopore DNA sequencing: are we there yet? Sci Bull 60:296–303

    Article  Google Scholar 

  8. Jiang Y, Guo W (2015) Nanopore-based sensing and analysis: beyond the resistive-pulse method. Sci Bull 60:491–502

    Article  Google Scholar 

  9. Xue P, Yang X, Lai X et al (2015) Controlling synthesis and gas-sensing properties of ordered mesoporous In2O3-reduced graphene oxide (rGO) nanocomposite. Sci Bull 60:1348–1354

    Article  Google Scholar 

  10. Zhao Y (2015) Sensing system for mimicking cancer cell–drug interaction. Sci Bull 60:1218–1219

    Article  Google Scholar 

  11. Georgiadis P, Cavouras D, Sidiropoulos K et al (2009) Remote monitoring of electromagnetic signals and seismic events using smart mobile devices. Comput Geosci 35:1296–1303

    Article  Google Scholar 

  12. Stopczynski A, Larsen JE, Stahlhut C et al (2011) A smartphone interface for a wireless EEG headset with real-time 3D reconstruction. In: D’Mello S, Graesser A, Schuller B et al (eds) Affective computing and intelligent interaction, PT II. Springer, Berlin, pp 317–318

    Chapter  Google Scholar 

  13. Petersen MK, Stahlhut C, Stopczynski A et al (2011) Smartphones get emotional mind reading images and reconstructing the neural sources. In: D’Mello S, Graesser A, Schuller B et al (eds) Affective computing and intelligent interaction, PT II. Springer, Berlin, pp 578–587

    Chapter  Google Scholar 

  14. Chen C, Campbell KD, Negi I et al (2012) A new sensor for the assessment of personal exposure to volatile organic compounds. Atmos Environ 54:679–687

    Article  Google Scholar 

  15. Kuo YS, Verma S, Schmid T et al (2010) Hijacking power and bandwidth from the mobile phone’s audio interface. In: Proceedings of the 8th international conference on embedded networked sensor systems, SenSys 2010, Zurich

  16. García A, Erenas MM, Marinetto ED et al (2011) Mobile phone platform as portable chemical analyzer. Sens Actuators B Chem 156:350–359

    Article  Google Scholar 

  17. López-Ruiz N, Martínez-Olmos A, Pérez de Vargas-Sansalvador IM et al (2012) Determination of O2 using colour sensing from image processing with mobile devices. Sens Actuators B Chem 171–172:938–945

    Article  Google Scholar 

  18. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243

    Article  Google Scholar 

  19. Sumriddetchkajorn S, Chaitavon K, Intaravanne Y (2013) Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sens Actuators B Chem 182:592–597

    Article  Google Scholar 

  20. Choodum A, Kanatharana P, Wongniramaikul W et al (2013) Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 115:143–149

    Article  Google Scholar 

  21. Coskun AF, Nagi R, Sadeghi K et al (2013) Albumin testing in urine using a smart-phone. Lab Chip 13:4231–4238

    Article  Google Scholar 

  22. Coskun AF, Wong J, Khodadadi D et al (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640

    Article  Google Scholar 

  23. Mudanyali O, Dimitrov S, Sikora U et al (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–2686

    Article  Google Scholar 

  24. Lee S, Oncescu V, Mancuso M et al (2014) A smartphone platform for the quantification of vitamin D levels. Lab Chip 14:1437–1442

    Article  Google Scholar 

  25. Mancuso M, Cesarman E, Erickson D (2014) Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip 14:3809–3816

    Article  Google Scholar 

  26. Hong JI, Chang BY (2014) Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 14:1725–1732

    Article  Google Scholar 

  27. Kumar Gunda NS, Naicker S, Shinde S et al (2014) Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli. Anal Methods 6:6236–6246

    Article  Google Scholar 

  28. Tseng D, Mudanyali O, Oztoprak C et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792

    Article  Google Scholar 

  29. Zhu H, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541–2544

    Article  Google Scholar 

  30. Zhu H, Mavandadi S, Coskun AF et al (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647

    Article  Google Scholar 

  31. Zhu H, Sencan I, Wong J et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13:1282–1288

    Article  Google Scholar 

  32. Zhu H, Yaglidere O, Su TW et al (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Article  Google Scholar 

  33. Zhu H, Isikman SO, Mudanyali O et al (2013) Optical imaging techniques for point-of-care diagnostics. Lab Chip 13:51–67

    Article  Google Scholar 

  34. Coskun AF, Ozcan A (2014) Computational imaging, sensing and diagnostics for global health applications. Curr Opin Biotechnol 25:8–16

    Article  Google Scholar 

  35. Feng S, Caire R, Cortazar B et al (2014) Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano 8:3069–3079

    Article  Google Scholar 

  36. Lee SA, Yang C (2014) A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14:3056–3063

    Article  Google Scholar 

  37. Balsam J, Bruck HA, Rasooly A (2013) Capillary array waveguide amplified fluorescence detector for mHealth. Sens Actuators B Chem 186:711–717

    Article  Google Scholar 

  38. Balsam J, Rasooly R, Bruck HA et al (2014) Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 51:1–7

    Article  Google Scholar 

  39. Awqatty B, Samaddar S, Cash KJ et al (2015) Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst 139:5230–5238

    Article  Google Scholar 

  40. Preechaburana P, Gonzalez MC, Suska A et al (2012) Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed 51:11585–11588

    Article  Google Scholar 

  41. Liu Y, Liu Q, Chen S et al (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 5:12864

    Article  Google Scholar 

  42. Gallegos D, Long KD, Yu H et al (2013) Label-free biodetection using a smartphone. Lab Chip 13:2124–2132

    Article  Google Scholar 

  43. Park TS, Li W, McCracken KE et al (2013) Smartphone quantifies Salmonella from paper microfluidics. Lab Chip 13:4832–4840

    Article  Google Scholar 

  44. Adel Ahmed H, Azzazy HM (2013) Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum. Biosens Bioelectron 49:478–484

    Article  Google Scholar 

  45. Lillehoj PB, Huang MC, Truong N et al (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955

    Article  Google Scholar 

  46. Delaney JL, Doeven EH, Harsant AJ et al (2013) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 790:56–60

    Article  Google Scholar 

  47. Huang YW, Ugaz VM (2013) Smartphone-based detection of unlabeled DNA via electrochemical dissolution. Analyst 138:2522–2526

    Article  Google Scholar 

  48. Doeven EH, Barbante GJ, Harsant AJ et al (2015) Mobile phone-based electrochemiluminescence sensing exploiting the “USB On-The-Go” protocol. Sens Actuators B Chem 216:608–613

    Article  Google Scholar 

  49. López M, Martínez S, Gómez JM et al (2009) Wireless monitoring of the pH, NH4 + and temperature in a fish farm. Procedia Chem 1:445–448

    Article  Google Scholar 

  50. Othman MF, Shazali K (2012) Wireless sensor network applications: a study in environment monitoring system. Procedia Eng 41:1204–1210

    Article  Google Scholar 

  51. Nemiroski A, Christodouleas DC, Hennek JW et al (2014) Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci USA 111:11984–11989

    Article  Google Scholar 

  52. Li J, Yu G, Lu Y et al (2012) Nanotechnology based cell-all phone-sensors for extended network chemical sensing. In: IEEE (ed) 2012 IEEE sensors proceedings, New York. IEEE, pp 60–63

  53. Larson EC, Goel M, Boriello G et al (2012) SpiroSmart: using a microphone to measure lung function on a mobile phone. In: Proceedings of the 2012 ACM conference on ubiquitous computing, New York, 2012

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21205112, 21225524, 21375124, 21475122, and 21127006), the Department of Science and Techniques of Jilin Province (20120308, 201215091, and SYHZ0006), and the Project for Research Equipment Development of Chinese Academy of Sciences (YZ201354, YZ201355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 518 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Bao, Y., Wang, D. et al. Smartphones for sensing. Sci. Bull. 61, 190–201 (2016). https://doi.org/10.1007/s11434-015-0954-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0954-1

Keywords

关键词

Navigation