Skip to main content
Log in

1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells

1 T中等强度稳态磁场影响Akt/mTOR信号通路并增强mTOR抑制剂对鼻咽癌细胞CNE-2Z的抑瘤效果

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Static magnetic field (SMF) has been known to affect cell proliferation in a cell-type-dependent manner, while the mechanism still remains unclear. We found that 1 T moderate intensity SMF inhibits cell proliferation of nasopharyngeal carcinoma CNE-2Z cells and the Akt/mTOR signaling pathway, which is upregulated in many cancers. mTOR inhibitors are potential chemodrugs, but their clinical effects are limited by the feedback reactivation of other signaling components such as EGFR and Akt. We showed that 1 T SMF increases the antitumor efficacy of mTOR inhibitor Torin 2. In addition, 1 T SMF increases the inhibition efficiency on mTOR substrates phosphorylation and represses the mTOR inhibitor-induced feedback reactivation of EGFR and Akt. Our study not only demonstrates that mTOR/Akt pathway is one of the molecular targets of SMFs in cells, but also reveals the clinical potentials of combinations of mTOR inhibitors and SMFs in cancer treatment.

摘要

已有报道表明,稳态磁场能够影响细胞分裂,且与细胞类型相关,但其机制并不清楚。我们发现1 T中等强度稳态磁场能够抑制鼻咽癌CNE-2Z细胞的增殖和Akt/mTOR信号通路。Akt/mTOR通路在多种肿瘤中高度活化,因此,mTOR抑制剂是具有潜在应用价值的化疗药物。然而,由于使用过程中出现了其他信号分子如EGFR和AKT的负反馈重新激活,使得这类抑制剂的临床效果受到限制。我们发现1 T稳态磁场能够增强mTOR抑制剂Torin 2的抑瘤效果。生化实验结果表明,1 T稳态磁场不仅增强了Torin 2对mTOR底物磷酸化的抑制,而且减弱了mTOR抑制剂诱导的EGFR和Akt的负反馈重激活。因此,我们的研究不仅证明了mTOR/Akt信号通路是稳态磁场作用于细胞的分子靶点之一,而且揭示了mTOR抑制剂和稳态磁场联合在肿瘤治疗方面的潜在应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grassi C, D’Ascenzo M, Torsello A et al (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315

    Article  Google Scholar 

  2. Rosen AD, Chastney EE (2009) Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells. Bioelectromagnetics 30:114–119

    Article  Google Scholar 

  3. Zhang M, Li X, Bai L et al (2013) Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: an in vitro study. Bioelectromagnetics 34:74–80

    Article  Google Scholar 

  4. Sullivan K, Balin AK, Allen RG (2011) Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics 32:140–147

    Article  Google Scholar 

  5. Aldinucci C, Garcia JB, Palmi M et al (2003) The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics 24:109–117

    Article  Google Scholar 

  6. Ghibelli L, Cerella C, Cordisco S et al (2006) NMR exposure sensitizes tumor cells to apoptosis. Apoptosis 11:359–365

    Article  Google Scholar 

  7. Sun Z, Wang Z, Liu X et al (2015) New development of inhibitors targeting the PI3K/AKT/mTOR pathway in personalized treatment of non-small-cell lung cancer. Anticancer Drugs 26:1–14

    Article  Google Scholar 

  8. Nakahara T, Yaguchi H, Yoshida M et al (2002) Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 224:817–822

    Article  Google Scholar 

  9. Zhao G, Chen S, Zhao Y et al (2010) Effects of 13 T static magnetic fields (smf) in the cell cycle distribution and cell viability in immortalized hamster cells and human primary fibroblasts cells. Plasma Sci Technol 12:123–128

    Article  Google Scholar 

  10. Zito CR, Jilaveanu LB, Anagnostou V et al (2012) Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS ONE 7:e31331

    Article  Google Scholar 

  11. Ocana A, Vera-Badillo F, Al-Mubarak M et al (2014) Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS ONE 9:e95219

    Article  Google Scholar 

  12. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  Google Scholar 

  13. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  Google Scholar 

  14. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    Article  Google Scholar 

  15. Sabatini DM, Erdjument-Bromage H, Lui M et al (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  Google Scholar 

  16. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  Google Scholar 

  17. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  Google Scholar 

  18. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  Google Scholar 

  19. Gadgeel SM, Wozniak A (2013) Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clin Lung Cancer 14:322–332

    Article  Google Scholar 

  20. Chresta CM, Davies BR, Hickson I et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70:288–298

    Article  Google Scholar 

  21. Liu Q, Xu C, Kirubakaran S et al (2013) Characterization of Torin 2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 73:2574–2586

    Article  Google Scholar 

  22. Thoreen CC, Kang SA, Chang JW et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  Google Scholar 

  23. English DP, Roque DM, Carrara L et al (2013) HER2/neu gene amplification determines the sensitivity of uterine serous carcinoma cell lines to AZD8055, a novel dual mTORC1/2 inhibitor. Gynecol Oncol 131:753–758

    Article  Google Scholar 

  24. Schenone S, Brullo C, Musumeci F et al (2011) ATP-competitive inhibitors of mTOR: an update. Curr Med Chem 18:2995–3014

    Article  Google Scholar 

  25. Wan X, Harkavy B, Shen N et al (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  Google Scholar 

  26. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1:248–259

    Article  Google Scholar 

  27. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121:1231–1241

    Article  Google Scholar 

  28. Fumarola C, Bonelli MA, Petronini PG et al (2014) Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 90:197–207

    Article  Google Scholar 

  29. Zardavas D, Fumagalli D, Loi S (2012) Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway inhibition: a breakthrough in the management of luminal (ER+/HER2−) breast cancers? Curr Opin Oncol 24:623–634

    Article  Google Scholar 

  30. Hao Q, Wenfang C, Xia A et al (2011) Effects of a moderate-intensity static magnetic field and adriamycin on K562 cells. Bioelectromagnetics 32:191–199

    Article  Google Scholar 

  31. Gray JR, Frith CH, Parker JD (2000) In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics 21:575–583

    Article  Google Scholar 

  32. Sabo J, Mirossay L, Horovcak L et al (2002) Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry 56:227–231

    Article  Google Scholar 

  33. Vergallo C, Ahmadi M, Mobasheri H et al (2014) Impact of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS ONE 9:e113530

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences “Hundred Talent Program” and the National Natural Science Foundation of China (U1532151), and the Chinese High Magnetic Field Laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, X., Liu, J. et al. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci. Bull. 60, 2120–2128 (2015). https://doi.org/10.1007/s11434-015-0950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0950-5

Keywords

关键词

Navigation