Skip to main content
Log in

2D materials via liquid exfoliation: a review on fabrication and applications

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Since graphene was discovered, the study of two-dimensional (2D) materials with atomic thickness has become a hot spot. To prepare different 2D materials, different methods have been groped, such as mechanical exfoliation, chemical vapor deposition (CVD), liquid-phase exfoliation. This review mainly introduced the sonication liquid-phase exfoliation, an effective method to prepare 2D materials. Compared with mechanical exfoliation and CVD methods, liquid-phase exfoliation is convenient and cost-effective and provides high yield. We focused on both theoretical and experimental details of this method. This method was reviewed according to the development of 2D materials from graphene, h-BN to transition metal chalcogenides (TMDs) and black phosphorus nanosheets. We discussed the applications of liquid-exfoliated 2D materials including micro- and nanoelectrical devices, photoelectric devices, and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  Google Scholar 

  3. Tongay S, Sahin H, Ko C et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252

    Article  Google Scholar 

  4. Hu P, Zhang J, Yoon M et al (2014) Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res 7:694–703

    Article  Google Scholar 

  5. Yu Y, Li C, Liu Y et al (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866

    Google Scholar 

  6. Li H, Wu J, Huang X et al (2014) A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 8:6563–6570

    Article  Google Scholar 

  7. Nicolosi V, Chhowalla M, Kanatzidis MG et al (2013) Liquid exfoliation of layered materials. Science 340:1226419

    Article  Google Scholar 

  8. Israelachvili JN (1991) Intermolecular and surface forces: revised, 3rd edn. Academic Press, London

    Google Scholar 

  9. Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695

    Article  Google Scholar 

  10. Hildebrand J, Prausnitz J, Scott R (1970) Regular and related solutions. Van Nostrand, New York

    Google Scholar 

  11. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  12. Park C, Ounaies Z, Watson KA et al (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  Google Scholar 

  13. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  14. Furtado C, Kim U, Gutierrez H et al (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105

    Article  Google Scholar 

  15. Maeda Y, Kimura S, Hirashima Y et al (2004) Dispersion of single-walled carbon nanotube bundles in nonaqueous solution. J Phys Chem B 108:18395–18397

    Article  Google Scholar 

  16. Bahr JL, Mickelson ET, Bronikowski MJ et al (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun (2):193–194

    Article  Google Scholar 

  17. Landi BJ, Ruf HJ, Worman JJ et al (2004) Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J Phys Chem B 108:17089–17095

    Article  Google Scholar 

  18. Ausman KD, Piner R, Lourie O et al (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911–8915

    Article  Google Scholar 

  19. Bourlinos AB, Georgakilas V, Zboril R et al (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5:1841–1845

    Article  Google Scholar 

  20. Hasan T, Scardaci V, Tan P et al (2007) Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J Phys Chem C 111:12594–12602

    Article  Google Scholar 

  21. Bergin SD, Nicolosi V, Streich PV et al (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881

    Article  Google Scholar 

  22. Bergin SD, Sun Z, Rickard D et al (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 3:2340–2350

    Article  Google Scholar 

  23. Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  Google Scholar 

  24. Ma Z, Yu J, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285

    Article  Google Scholar 

  25. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  Google Scholar 

  26. Fukushima T, Kosaka A, Ishimura Y et al (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  Google Scholar 

  27. Liu N, Luo F, Wu H et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525

    Article  Google Scholar 

  28. Zhou X, Wu T, Ding K et al (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun 46:386–388

    Article  Google Scholar 

  29. Wang X, Fulvio PF, Baker GA et al (2010) Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Commun 46:4487

    Article  Google Scholar 

  30. Restolho J, Mata JL, Saramago B (2009) On the interfacial behavior of ionic liquids: surface tensions and contact angles. J Colloid Interface Sci 340:82–86

    Article  Google Scholar 

  31. Nuvoli D, Valentini L, Alzari V et al (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431

    Article  Google Scholar 

  32. Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  Google Scholar 

  33. Qian W, Hao R, Hou Y et al (2009) Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res 2:706–712

    Article  Google Scholar 

  34. Zheng J, Di CA, Liu Y et al (2010) High quality graphene with large flakes exfoliated by oleyl amine. Chem Commun 46:5728–5730

    Article  Google Scholar 

  35. Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48:3703–3705

    Article  Google Scholar 

  36. Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  Google Scholar 

  37. Lu J, Do I, Drzal LT et al (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832

    Article  Google Scholar 

  38. Scheuermann GM, Rumi L, Steurer P et al (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    Article  Google Scholar 

  39. Dong L, Gari RRS, Li Z et al (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787

    Article  Google Scholar 

  40. Offeman R, Hummers W (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  41. Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491

    Article  Google Scholar 

  42. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  43. Cui X, Zhang C, Hao R et al (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3:2118–2126

    Article  Google Scholar 

  44. Paek S-M, Yoo E, Honma I (2008) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  Google Scholar 

  45. Wang D, Choi D, Li J et al (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914

    Article  Google Scholar 

  46. Zhou G, Wang D-W, Li F et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  Google Scholar 

  47. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  Google Scholar 

  48. Pacilé D, Meyer JC, Girit CO et al (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107

    Article  Google Scholar 

  49. Han WQ, Wu L, Zhu Y et al (2008) Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl Phys Lett 93:223103

    Article  Google Scholar 

  50. Terrones M, Romo-Herrera J, Cruz-Silva E et al (2007) Pure and doped boron nitride nanotubes. Mater Today 10:30–38

    Article  Google Scholar 

  51. Zhi C, Bando Y, Tang C et al (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893

    Article  Google Scholar 

  52. Warner JH, Rummeli MH, Bachmatiuk A et al (2010) Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 4:1299–1304

    Article  Google Scholar 

  53. Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  Google Scholar 

  54. Wang Y, Shi Z, Yin J (2011) Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21:11371

    Article  Google Scholar 

  55. Cho H-B, Tokoi Y, Tanaka S et al (2011) Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. Compos Sci Technol 71:1046–1052

    Article  Google Scholar 

  56. Dean CR, Young AF, Meric I et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726

    Article  Google Scholar 

  57. Roy T, Tosun M, Kang JS et al (2014) Field-effect transistors built from all two-dimensional material components. ACS Nano 8:6259–6264

    Article  Google Scholar 

  58. Zeng H, Zhi C, Zhang Z et al (2010) “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett 10:5049–5055

    Article  Google Scholar 

  59. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193

    Article  Google Scholar 

  60. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  61. Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948

    Article  Google Scholar 

  62. Weiss K, Phillips JM (1976) Calculated specific surface energy of molybdenite (MoS2). Phys Rev B 14:5392–5395

    Article  Google Scholar 

  63. Fuhr J, Sofo J, Saúl A (1999) Adsorption of Pd on MoS2 (1000): ab initio electronic-structure calculations. Phys Rev B 60:8343

    Article  Google Scholar 

  64. Hertel T, Hagen A, Talalaev V et al (2005) Spectroscopy of single-and double-wall carbon nanotubes in different environments. Nano Lett 5:511–514

    Article  Google Scholar 

  65. Lotya M, King PJ, Khan U et al (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162

    Article  Google Scholar 

  66. Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842

    Article  Google Scholar 

  67. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  68. May P, Khan U, Hughes JM et al (2012) Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J Phys Chem C 116:11393–11400

    Article  Google Scholar 

  69. Varrla E, Backes C, Paton KR et al (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139

    Article  Google Scholar 

  70. Liu J, Zeng Z, Cao X et al (2012) Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 8:3517–3522

    Article  Google Scholar 

  71. Matte RHSS, Gomathi A, Manna AK et al (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 122:4153–4156

    Article  Google Scholar 

  72. Zeng Z, Yin Z, Huang X et al (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50:11093–11097

    Article  Google Scholar 

  73. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  74. Lee K, Kim HY, Lotya M et al (2011) Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv Mater 23:4178–4182

    Article  Google Scholar 

  75. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  76. Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  Google Scholar 

  77. Zhang Z, Yao K, Liu Y et al (2007) Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv Funct Mater 17:2478–2489

    Article  Google Scholar 

  78. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  79. Furchi MM, Polyushkin DK, Pospischil A et al (2014) Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett 14:6165–6170

    Article  Google Scholar 

  80. Peimyoo N, Yang W, Shang J et al (2014) Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 8:11320–11329

    Article  Google Scholar 

  81. Ruppert C, Aslan OB, Heinz TF (2014) Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett 14:6231–6236

    Article  Google Scholar 

  82. Pospischil A, Furchi MM, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257–261

    Article  Google Scholar 

  83. Lopez-Sanchez O, Lembke D, Kayci M et al (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    Article  Google Scholar 

  84. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  Google Scholar 

  85. Brent JR, Savjani N, Lewis EA et al (2014) Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun 50:13338–13341

    Article  Google Scholar 

  86. Yasaei P, Kumar B, Foroozan T et al (2015) High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv Mater 27:1887–1892

    Article  Google Scholar 

  87. Shih CJ, Vijayaraghavan A, Krishnan R et al (2011) Bi- and trilayer graphene solutions. Nat Nanotechnol 6:439–445

    Article  Google Scholar 

  88. Hanlon D, Backes C, Doherty E et al (2015) Liquid exfoliation of solvent-stabilised black phosphorus: applications beyond electronics. arXiv:150101881

  89. Engel M, Steiner M, Avouris P (2014) Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett 14:6414–6417

    Article  Google Scholar 

  90. Deng Y, Luo Z, Conrad NJ et al (2014) Black phosphorus-monolayer MoS2 van der Waals Heterojunction p–n diode. ACS Nano 8:8292–8299

    Article  Google Scholar 

  91. Zhang S, Yan Z, Li Y et al (2015) Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed 54:3112–3115

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2014CB931700), the National Natural Science Foundation of China (61222403, 61307067), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, C., Yan, Z., Song, X. et al. 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull. 60, 1994–2008 (2015). https://doi.org/10.1007/s11434-015-0936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0936-3

Keywords

Navigation