Skip to main content
Log in

Condensation heat transfer enhancement mechanism for vertical upflows by the phase separation concept at small gravity

小重力环境下相分离冷凝管内冷凝强化换热机理研究

  • Article
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the small gravity environment, which leads to reduction in the service life of equipments. In this study, a passive condenser, developed on basis of the phase separation concept, is utilized to improve the performance of the condensation heat transfer under the small gravity environment. As a result of the limitation of experiments, the mechanisms of heat transfer enhancement of the phase separation condenser tube are revealed through numerical simulation based on the volume-of-fluid (VOF) method. The following conclusions could be obtained: (1) A novel phase distribution of “gas near the tube wall and liquid in the tube core” is formed. The thin liquid film is indeed created after the flow pattern modulation by inserting mesh cylinder. (2) The condensation quantity for single bubble in the annular region increases about 16 times greater than that in the bare tube region in the case of J l = 0.0574 m/s and J g = 0.0229 m/s. (3) Gas volume fraction affects the parameters of liquid film thickness, bubble length and liquid bridge length. The increase in the gas volume fraction results in the decrease in the evaluation index from 21.56 to 12.82. The evaluation index is defined as the ratio of the condensation quantities per unit tube length of the annular region and the bare tube region.

摘要

对于航空航天领域,由于设备体积最小化及封装的需求,导致设备热负荷极具增加。此外,小重力环境下由于缺少足够的驱动力,液体在管壁面大量聚集,液膜厚度增加,导致冷凝换热性能恶化,这将降低设备的使用寿命。为了克服这一问题,一种相分离冷凝管被提出用于提高小重力环境下的冷凝换热性能。由于小重力环境下实验研究的限制,本文采用VOF方法数值研究了相分离冷凝管内的冷凝强化换热机理。研究表明:(1)由于金属网状结构的存在,形成了“气在管壁,液在中心”的新型流型结构,产生的超薄液膜有利于强化冷凝换热;(2)在J 1 = 0.0574 m/s 和 J g  = 0.0229 m/s的工况下,环隙区域内单个气泡的冷凝量较光管区域提高了约16倍;(3)气体体积流量对液膜厚度、气弹长度和液桥长度均具有较大影响。随着气体体积流量的增加,冷凝强化评价指标从21.56下降到了12.82。这里冷凝强化评价指标定义为环隙区域和光管区域内单位管长冷凝量的比值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O’Keefe S (2004) The vision for space exploration. Natl Aeronaut Space Adm. 1–22

  2. Thompson F (1967) Report of the Apollo 204 review board. Natl Aeronaut Space Adm, April

  3. NASA (2005) NASA’s exploration systems architecture study-final report. NASA-TM-2005-214062

  4. Zhang NT, Li H, Zhang QY (2007) Thought and developing trend in deep space exploration and communication. J Astronaut 28:786–793

    Google Scholar 

  5. Hofstetter WK, Wooster PD, Nadir WD et al (2005) Affordable human moon and mars exploration through hardware commonality. In: AIAA space conference. AIAA 2005–6757

  6. Metschan S (2006) An alternate approach toward achieving the new vision for space exploration. In: AIAA space conference. AIAA 2006–7517

  7. Sanders GB (2013) Lunar polar in situ resource utilization (ISRU) as a stepping stone for human exploration. NASA Technical Reports Server, 14 October

  8. Zhao M (2008) Experimental research on boiling heat transfer of pipe water flow under hi-g condition. Dissertation for Master’s Degree. Nanjing University of Aeronautics and Astronautics, Nanjing

    Google Scholar 

  9. Kim J, Benton J, Mcquillen J et al (2001) Subcooled pool boiling heat transfer in microgravity and hi-g. J Heat Transf 123:620–628

    Article  Google Scholar 

  10. Yao QP, Song BY, Ma LJ (2008) Flow characteristic of air-water two-phase flow in a horizontal pipe under high gravity. J Eng Thermophys 29:1327–1330

    Google Scholar 

  11. Siegel R (1967) Effect of reduced gravity on heat transfer. Academic Press, New York, pp 143–228

    Google Scholar 

  12. Siegel R, Usiskin C (1959) A photographic study of boiling in the absence of gravity. J Heat Transf 81:230–236

    Google Scholar 

  13. Xu M, Zhang JW, Shen ZG et al (2004) Numerical simulation of gas-liquid two-phase flow and mass transfer in a rotating packed bed. J Beijing Univ Chem Technol 5:30–35

    Google Scholar 

  14. Ma XH, Xu DQ, Lin JF (1999) Condensation heat transfer enhancement with dropwise and film coexisting condensation surface. CIESC J 50:535–540

    Google Scholar 

  15. Zhao Q, Zhang DC, Zhu XB (1990) Industrial application of dropwise condensation. Int Heat Transf Conf 1–7:391–394

    Google Scholar 

  16. Lang XQ, Ma HQ, Tan X (2004) Progress on dropwise condensation mechanism and heat transfer surface modification. J Petr Univ 17:31–38

    Google Scholar 

  17. Yang SM, Tao WQ (2006) Heat transfer, 4th edn. Higher Education Press, Beijing

    Google Scholar 

  18. Miyara A, Nonaka K, Taniguchi M (2000) Condensation heat transfer and flow pattern inside a herringbone-type micro-fin tube. Int J Refrig Rev Int Froid 23:141–152

    Article  Google Scholar 

  19. Sapali SN, Patil PA (2010) Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube. Exp Therm Fluid Sci 34:1133–1141

    Article  Google Scholar 

  20. Goto M, Inoue N, Yonemoto R (2003) Condensation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig Rev Int Froid 26:410–416

    Article  Google Scholar 

  21. Olivier JA, Liebenberg L, Thome JR et al (2007) Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes. Int J Refrig Rev Int Froid 30:609–623

    Article  Google Scholar 

  22. Wang YC, Tang GH (2014) Acid condensation and heat transfer characteristics on H-type fin surface with bleeding dimples and longitudinal vortex generators. Chin Sci Bull 59:4405–4417

    Article  Google Scholar 

  23. Uchida M, Itoh M, Shikazono N et al (1996) Experimental study on the heat transfer performance of a zeotropic refrigerant mixture in horizontal tubes. In: International refrigeration and air conditioning conference paper 313

  24. Cavallini A, Del Col D, Doretti L et al (2000) Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. Int J Refrig Rev Int Froid 23:4–25

    Article  Google Scholar 

  25. Muzzio A, Niro A, Arosio S (1998) Heat transfer and pressure drop during evaporation and condensation of R22 inside 9.52 mm O.D. micro-fin tubes of different geometries. Enhanc Heat Transf 5:39–52

    Article  Google Scholar 

  26. Chen HX, Xu JL, Wang W (2011) An internal condenser tubes dispensing hood. Chinese Patent CN102278904A

  27. Chen HX, Xu JL, Wang W (2012) An enhancement condensation pipe with inserted mesh cylinder. USA Patent PCT/CN2012/000274

  28. Chen HX, Xu JL, Li ZJ et al (2013) Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface. Appl Energy 112:1283–1290

    Article  Google Scholar 

  29. Chen HX, Xu JL, Li ZJ et al (2012) Flow pattern modulation in a horizontal tube by the passive phase separation concept. Int J Multiph Flow 45:12–23

    Article  Google Scholar 

  30. Chen HX, Xu JL, Xie J et al (2014) Modulated flow patterns for vertical upflow by the phase separation concept. Exp Therm Fluid Sci 52:297–307

    Article  Google Scholar 

  31. Xie J, Xing F, Xu JL et al (2014) Significant heat transfer enhancement for R123 condensation by micromembrane cylinder. Chin Sci Bull 59:3676–3685

    Article  Google Scholar 

  32. Sun DL, Xu JL, Chen QC et al (2013) Numerical study of flow pattern modulation in a vertical phase separation condenser tube. Chin Sci Bull 58:1592–1598

    Article  Google Scholar 

  33. Lee HJ, Lee SY (2011) Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int J Multiph Flow 27:783–796

    Article  Google Scholar 

  34. Chen QC, Xu JL, Sun DL (2014) The bubble leakage mechanism for vertical upflows by the phase separation concept. Chin Sci Bull 59:2638–2646

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51476054 and 51506026) and the Program for New Century Excellent Talents in University (NCET-13-0792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sun, D. Condensation heat transfer enhancement mechanism for vertical upflows by the phase separation concept at small gravity. Sci. Bull. 60, 1759–1767 (2015). https://doi.org/10.1007/s11434-015-0906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0906-9

Keywords

关键词

Navigation