Skip to main content
Log in

Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic

中国大陆架的外来起源和对中生代以来西太平洋和中国东部地质演化的全新认

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

The effect of paleo-Pacific subduction on the geological evolution of the western Pacific and continental China is likely complex. Nevertheless, our analysis of the distribution of Mesozoic granitoids in the eastern continental China in space and time has led us to an interesting conclusion: The basement of the continental shelf beneath East and South China Seas may actually be of exotic origin geologically unrelated to the continental lithosphere of eastern China. By accepting the notion that the Jurassic–Cretaceous granitoids in the region are genetically associated with western Pacific subduction and the concept that subduction may cease to continue only if the trench is being jammed, then the termination of the granitoid magmatism throughout the vast region at ~88 ± 2 Ma manifests the likelihood of “sudden”, or shortly beforehand (~100 Ma), trench jam of the Mesozoic western Pacific subduction. Trench jam happens if the incoming “plate” or portion of the plate contains a sizeable mass that is too buoyant to subduct. The best candidate for such a buoyant and unsubductable mass is either an oceanic plateau or a micro-continent. We hypothesize that the basement of the Chinese continental shelf represents such an exotic, buoyant and unsubductable mass, rather than seaward extension of the continental lithosphere of eastern China. The locus of the jammed trench (i.e., the suture) is predictably located on the shelf in the vicinity of, and parallel to, the arc-curved coastal line of the southeast continental China. It is not straightforward to locate the locus in the northern section of the East China Sea shelf because of the more recent (<20 Ma) tectonic re-organization associated with the opening of the Sea of Japan. We predict that the trench jam at ~100 Ma led to the re-orientation of the Pacific plate motion in the course of NNW direction as inferred from the age-progressive Emperor Seamount Chain of Hawaiian hotspot origin (its oldest unsubdued Meiji and Detroit seamounts are ~82 Ma), making the boundary between the Pacific plate and the newly accreted plate of eastern Asia a transform fault at the location east of the continental shelf of exotic origin. This explains the apparent ~40 Myr magmatic gap from ~88 to ~50 Ma prior to present-day western Pacific subduction initiation. We propose that basement penetration drilling on well-chosen sites is needed to test the hypothesis in order to reveal the true nature of the Chinese continental shelf basement. This testing becomes critical and cannot longer be neglected in order to genuinely understand the tectonic evolution of the western Pacific and its effect on the geology of eastern China since the Mesozoic, including the cratonic lithosphere thinning, related magmatism/mineralization, and the mechanism of the subsequent South China Sea opening, while also offering novel perspectives on aspects of the plate tectonics theory. We also suggest the importance of future plate tectonic reconstruction of the western Pacific to consider the nature and histories of the Chinese continental shelf of exotic origin as well as the probable transform plate boundary from ~100 to ~50 Ma. Effort is needed to reveal the true nature and origin of the ~88 ± 2 Ma granitic gneisses in Taiwan and the 110–88 Ma granitoids on the Hainan Island.

摘要

从中国东部侏罗-白垩纪花岗岩的时空分布得出结论,中国大陆架基底是外来地体,与中国大陆岩石圈无关。中生代时古太平洋板块的NW向俯冲和俯冲板片在地幔过渡带的滞留和脱水, 通过“底部加水弱化”导致了中国东部广泛的岩石圈减薄, 并伴随以改造前古老岩石圈底部为源区的基性岩浆活动。这些基性岩浆底侵引起大规模地壳熔融,造就了上述花岗岩的广泛分布。最年轻的花岗岩为~88 Ma,表明最终导致这些岩浆作用的古太平洋俯冲在~100 Ma已终止。导致俯冲终止的唯一机制是俯冲海沟堵塞,而堵塞体是规模大、密度低、浮力大,不能俯冲的地体。中国大陆架的基底就是~100 Ma时伴随古太平洋板块漂来不能俯冲的地体,可能是大洋高原,也可能是微陆块,这需要大陆架基底深钻检验。这一俯冲堵塞事件引起古太平洋板块改航, 向NNW漂移(与“皇帝海山链”方向一致)。 从~100 Ma到~50 Ma,古太平洋板块与新增生的亚洲大陆为转换断层关系,所以西太平洋在这段时间 (~80 – ~50 Ma) 没有岩浆作用。从~50 Ma到~43 Ma,这个边界演化为斜交俯冲。从~43 Ma至今,太平洋板块沿NW垂向俯冲(与“夏威夷海山链”方向一致)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wong WH (1929) The Mesozoic orogenic movement in Eastern China. Bull Geol Soc China 8:33–44

    Article  Google Scholar 

  2. Chen GD (1960) Theory of activation of platforms and its significance in ore searching. Geological Press, Beijing, p 408 (in Chinese)

  3. Menzies MA, Fan WM, Zhang M (1993) Paleozoic and Cenozoic lithoprobe and the loss of >120 km of Archean lithosphere, Sino-Korean Craton, China. Geol Soc Spec Publ 76:71–78

    Article  Google Scholar 

  4. Deng J, Zhao H, Luo Z et al (1998) Mantle plumes and lithosphere motion in east Asia. Am Geophys Union Geodyn Ser 27:59–66

    Article  Google Scholar 

  5. Griffin WL, Zhang A, O’Reilly SY et al (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Am Geophys Union Geodyn Ser 27:107–126

    Article  Google Scholar 

  6. Fan WM, Zhang HF, Baker J et al (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41:933–950

    Article  Google Scholar 

  7. Xu YG (2001) Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth A 26:747–757

    Article  Google Scholar 

  8. Gao S, Rudnick RL, Carlsomn RW et al (2002) Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett 198:307–322

    Article  Google Scholar 

  9. Gao S, Rudnick RL, Yuan HL et al (2004) Recycling lower continental crust in the North China Craton. Nature 432:892–897

    Article  Google Scholar 

  10. Deng JF, Mo XX, Zhao HL et al (2004) A new model for the dynamic evolution of Chinese lithosphere: “continental roots-plume tectonics”. Earth Sci Rev 65:223–275

    Article  Google Scholar 

  11. Deng JF, Su SG, Niu YL et al (2007) A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonic deformation. Lithos 96:22–35

    Article  Google Scholar 

  12. Menzies MA, Xu YG, Zhang HF et al (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96:1–21

    Article  Google Scholar 

  13. Liu Y, Gao S, Kelemen PB et al (2008) Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta 72:2349–2376

    Article  Google Scholar 

  14. Zhu RX, Xu YG, Zhu G et al (2012) Destruction of the north China Craton. Sci China Earth Sci 55:1565–1587

    Article  Google Scholar 

  15. Zhang HF, Sun YL, Tang YJ et al (2012) Melt peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: petrology, geochemistry and Sr, Nd and Re isotopes. Lithos 149:100–114

    Article  Google Scholar 

  16. Xia QK, Hao YT (2013) The distribution of water in the continental lithospheric mantle and its implications for the stability of continents. Chin Sci Bull 58:3879–3889

    Article  Google Scholar 

  17. Liu SC, Xia QK (2014) Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: implications for the destruction of the North China Craton. Chin Sci Bull 59:1362–1365

    Article  Google Scholar 

  18. Niu YL (2005) Generation and evolution of basaltic magmas: some basic concepts and a hypothesis for the origin of the Mesozoic–Cenozoic volcanism in eastern China. Geol J China Univ 11:9–46

    Google Scholar 

  19. Niu YL (2006) Continental lithospheric thinning results from hydration weakening, not “delamination”, and is a special consequence of plate tectonics, for “mantleplume.org”. http://www.mantleplumes.org/Hydration.html

  20. Karason H, van der Hilst R (2000) Constraints on mantle convection from seismic tomography. Geophys Monogr 121:277–288

    Google Scholar 

  21. Zhao DP, Ohtani E (2009) Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res 16:401–413

    Article  Google Scholar 

  22. Niu YL (2014) Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives. Glob Tecton Metal 10:23–46

    Article  Google Scholar 

  23. Niu YL (2009) Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts (OIB). Chin Sci Bull 54:4148–4160

    Article  Google Scholar 

  24. Moberly R (1972) Origin of lithosphere behind island arcs with reference to the western Pacific. Geol Soc Am Memoir 132:35–55

    Article  Google Scholar 

  25. Taylor B (1993) Island arcs, deep sea trenches, and back-arc basins. Oceanus 35:17–25

    Google Scholar 

  26. Yang W, Li SG (2008) Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: implications for lithospheric thinning of the North China Craton. Lithos 102:88–117

    Article  Google Scholar 

  27. Meng FX, Gao S, Niu YL et al (2015) Mesozoic-Cenozoic mantle evolution beneath the North China Craton: a new perspective from Hf–Nd isotopes of basalts. Gondwana Res 27:1574–1585

    Article  Google Scholar 

  28. Wan TF (2010) The tectonics of China-data, maps and evolution. Higher Education Press, Beijing, p 501

    Google Scholar 

  29. Zhou XM, Sun T, Shen WZ et al (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29:26–33

    Google Scholar 

  30. Zhou XM, Li WX (2000) Origin of Late Mesozoic igneous rocks of southeastern China: implications for lithosphere subduction and underplating of mafic magma. Tectonophysics 326:269–287

    Article  Google Scholar 

  31. Li ZX, Li XH, Chun S-L et al (2012) Magmati switch-on and switch-off along South China continental margin since the Permian: transition from an Andean-type to a western Pacific type. Tectonophysics 523–535:271–290

    Article  Google Scholar 

  32. Zhang Q (2010) Is eastern China an integral part of the circum-Pacific tectonic belt? Granitoid controversy (3). http://www.ysxb.ac.cn/ysxb/ch/reader/view_news.aspx?id=2010030182926001. (in Chinese)

  33. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Memoir 74:153

    Google Scholar 

  34. Wyllie PJ (1977) Crustal anatexis: an experimental review. Tectonophysics 13:41–71

    Article  Google Scholar 

  35. Wyllie PJ, Huang WL, Stern CR et al (1976) Granitic magmas: possible and impossible sources, water contents, and crystallization sequences. Can J Earth Sci 13:1007–1019

    Article  Google Scholar 

  36. Niu YL, Zhao ZD, Zhu DC et al (2013) Continental collision zones are primary sites for net continental crust growth—a testable hypothesis. Earth Sci Rev 127:96–110

    Article  Google Scholar 

  37. Herbert EH, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  38. He ZY, Xu XS, Niu YL (2010) Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China. Lithos 119:621–641

    Article  Google Scholar 

  39. Guo PY, Niu YL, Ye L et al (2014) Lithosphere thinning beneath west North China Craton: evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos 202(203):37–54

    Article  Google Scholar 

  40. Liu JJ, Ye L, Niu YL et al (2014) The geochemistry of late Mesozoic volcanic rocks from the North China Craton and temporal and spatial constraints on the lithosphere thinning. Geol J China Univ 20:491–506 (in Chinese)

    Article  Google Scholar 

  41. Ye L, Liu JJ, Niu YL et al (2015) Mantle sources and petrogenesis of the Cenozoic basalts in Fanshi, Shanxi province: geochemical and Sr–Nd–Pb–Hf isotopic evidence. Acta Petrol Sin 31:161–175 (in Chinese)

    Google Scholar 

  42. Niu YL, O’Hara MJ, Pearce JA (2003) Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrologic perspective. J Petrol 44:851–866

    Article  Google Scholar 

  43. Ben-Avraham Z, Nur A, Jones D et al (1981) Continental accretion: from oceanic plateaus to allochthonous terranes. Science 213:47–54

    Article  Google Scholar 

  44. Abbott DH, Drury R, Mooney WD (1997) Continents as lithological iceberg: the importance of buoyant lithospheric root. Earth Planet Sci Lett 149:15–27

    Article  Google Scholar 

  45. Klosko ER, Russo RM, Okal EA et al (2001) Evidence for a rhyologically strong chemical mantle root beneath the Ontong–Java Plateau. Earth Planet Sci Lett 187:15–27

    Google Scholar 

  46. Woods MT, Davies GF (1982) Late Cretaceous genesis of the Kula plate. Earth Planet Sci Lett 58:161–166

    Article  Google Scholar 

  47. Xu YJ, Cawood PA, Du YS et al (2014) Terminal suturing of Gondwana along the southern margin of South China Craton: evidence from detrital zircon U–Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island. Tectonics 33:2490–2504

    Article  Google Scholar 

  48. Gao S, Zhang BR, Jin ZM et al (1998) How mafic is the lower continental crust? Earth Planet Sci Lett 161:101–117

    Article  Google Scholar 

  49. Maruyama S (1997) Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6:121–142

    Article  Google Scholar 

  50. Jiang XY, Li XH (2014) In situ zircon U–Pb and Hf–O isotopic results for ca. 73 Ma granite in Hainan Island: implications for the termination of an Andean-type active continental margin in southeast China. J Asian Earth Sci 82:32–46

    Article  Google Scholar 

  51. Fujisaki W, Usozaki Y, Maki K et al (2014) Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: constraints to the provenance of the mid-Mesozoic trench in East Asia. J Asian Earth Sci 88:62–73

    Article  Google Scholar 

  52. Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–431

    Article  Google Scholar 

  53. Yan CY, Kroenke LW (1993) A plate tectonic reconstruction of the southwest Pacific, 0–100 Ma. Proc Ocean Drill Program Sci Results 130:697–709

    Google Scholar 

  54. Mo XX, Dong GC, Zhao ZD et al (2009) Mantle input to the crust in southern Gangdese, Tibet, during the Cenozoic: zircon Hf isotopic evidence. J Earth Sci 20:241–249

    Article  Google Scholar 

  55. Mo XX, Hou ZQ, Niu YL et al (2007) Mantle contributions to crustal thickening in south Tibet in response to the India–Asia collision. Lithos 96:225–242

    Article  Google Scholar 

  56. Mo XX, Niu YL, Dong GC et al (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong Volcanic Succession in southern Tibet. Chem Geol 250:49–67

    Article  Google Scholar 

  57. Ding S, Huang H, Niu YL et al (2011) Geochemistry, geochronology and petrogenesis of East Kunlun high Nb–Ta rhyolites. Acta Petrol Sin 27:3603–3614 (in Chinese)

    Google Scholar 

  58. Song SG, Niu YL, Su L et al (2014) Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochim Cosmochim Acta 130:42–62

    Article  Google Scholar 

  59. Chen YX, Song SG, Niu YL et al (2014) Melting of continental crust during subduction initiation: a case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim Cosmochim Acta 132:311–336

    Article  Google Scholar 

  60. Huang H, Niu YL, Nowell G et al (2014) Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism. Chem Geol 370:1–18

    Article  Google Scholar 

  61. Huang H, Niu YL, Nowell G et al (2015) The nature and history of the Qilian Block in the context of the development of the Greater Tibetan Plateau. Gondwana Res 28:209–224

    Article  Google Scholar 

  62. Wang MJ, Song SG, Niu YL et al (2014) Post-collisional magmatism: consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos 210/211:181–198

    Article  Google Scholar 

  63. Chen S, Niu YL, Sun WL et al (2015) On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China. Mineral Petrol. doi:10.1007/s00710-015-0383-5

    Google Scholar 

  64. Chen S, Niu YL, Li JY et al (2015) The origin of MMEs in syncollisional adakitic granodiorites: new perspectives from the Qumushan pluton in the North Qilian Orogen, China. Lithos (in review)

  65. Hu Y, Niu YL, Li JY et al (2015) Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos. doi:10.1016/j.lithos.2015.05.004

    Google Scholar 

  66. Zhang Y, Niu YL, Hu Y et al (2015) The syncollisional granitoid magmatism and continental crustal growth in the West Kunlun Orogen, China—evidence from geochronology and geochemistry of the Arkarz pluton. Lithos. doi:10.1016/j.lithos.2015.05.007

    Google Scholar 

  67. Green DH, Hibberson WO, Kovacs I et al (2010) Water and its influence on the lithosphere–asthenosphere boundary. Nature 467:448–451

    Article  Google Scholar 

  68. Green DH (2015) Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Miner 42:95–122

    Article  Google Scholar 

  69. McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349

    Article  Google Scholar 

  70. Niu YL, O’Hara MJ (2009) MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos 112:1–17

    Article  Google Scholar 

  71. Song SG, Niu YL, Su L et al (2013) Tectonics of the North Qilian orogen, NW China. Gondwana Res 23:1378–1401

    Article  Google Scholar 

  72. Song SG, Niu YL, Su L et al (2014) Continental orogenesis from seafloor subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China. Earth Sci Rev 129:59–84

    Article  Google Scholar 

  73. Zhu DC, Zhao ZD, Niu YL et al (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

  74. Niu YL (2004) The origin of the 43 Ma bend along the Hawaii-Emperor seamount chain: problem and solution (Chapter 4). In: Hékinian R, Stoffers P (eds) Oceanic hotspots. Springer, New York, pp 143–155

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41130314, 91014003), Chinese Academy of Sciences Innovation (Y42217101L), grants from Regional and Local Authorities (Shandong Province and City of Qingdao) and supported by National Oceanography Laboratory in Qingdao. The principal ideas in this paper were previously presented by the senior author at the annual national symposia on Destruction of the North China Craton (December 2012 & 2014, Beijing), at a workshop in the First Institute of Oceanography (December 2013, Qingdao), at the Western Pacific land–ocean-geo-dynamics workshop (March 2015, Qingdao), and at the thematic conference. The connection of the North China Craton destruction with the Paleo-Pacific subduction (March 26–27, 2015, Beijing) organized and supported by the National Natural Science Foundation of China (NSFC), for which we thank Professors Jin Zhenmin, Zhang Guowei and Zhu Rixiang for invitation. We thank Professors Xiaolong Huang and Shuguang Song for constructive reviews and Professor Zhidan Zhao for suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoling Niu.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Liu, Y., Xue, Q. et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Sci. Bull. 60, 1598–1616 (2015). https://doi.org/10.1007/s11434-015-0891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0891-z

Keywords

Navigation