Skip to main content
Log in

Honeycomb silicon: a review of silicene

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Silicene, a new allotrope of silicon in a two-dimensional honeycomb structure, has attracted intensive research interest due to its novel physical and chemical properties. Unlike carbon atoms in graphene, silicon atoms prefer to adopt sp2/sp3-hybridized state in silicene, enhancing chemical activity on the surface and allowing tunable electronic states by chemical functionalization. The silicene monolayers epitaxially grown on Ag(111) surfaces demonstrate various reconstructions with different electronic structures. In this article, the structure, phonon modes, electronic properties, and chemical properties of silicene are reviewed based on theoretical and experimental works in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Feng BJ, Ding ZJ, Meng S et al (2012) Evidence of silicene in honeycomb structure of silicon on Ag(111). Nano Lett 12:3507–3511

    Article  Google Scholar 

  3. Meng L, Wang YL, Zhang LZ et al (2013) Buckled silicene formation on Ir(111). Nano Lett 13:685–690

    Article  Google Scholar 

  4. Fleurence A, Friedlein R, Ozaki T et al (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Article  Google Scholar 

  5. Gao JF, Zhao JJ (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci Rep 2:861

    Google Scholar 

  6. Kara A, Enriquez H, Seitsonen AP et al (2012) A review on silicene—new candidate for electrons. Surf Sci Rep 67:1–18

    Article  Google Scholar 

  7. Watanabe K, Takashi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409

    Article  Google Scholar 

  8. Seifert G, Terrones H, Terrones M et al (2000) Structure and electronic properties of MoS2 nanotubes. Phys Rev Lett 85:146–149

    Article  Google Scholar 

  9. Braga D, Lezama IG, Berger H et al (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223

    Article  Google Scholar 

  10. Lalmi B, Oughaddou H, Enriquez H et al (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Article  Google Scholar 

  11. O’Hare A, Kusmartsev FV, Kugel KI (2012) A stable “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett 12:1045–1052

    Article  Google Scholar 

  12. Resta A, Leoni T, Barth C et al (2013) Atomic structures of silicene layers grown on Ag(111): scanning tunnelling microscopy and noncontact atomic force microscopy observations. Sci Rep 3:2399

    Article  Google Scholar 

  13. Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501

    Article  Google Scholar 

  14. Yan JA, Stein R, Schaefer DM et al (2013) Electron–phonon coupling in two-dimensional silicene and germanene. Phys Rev B 88:121403

    Article  Google Scholar 

  15. Chen L, Li H, Feng BJ et al (2013) Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys Rev Lett 110:085504

    Article  Google Scholar 

  16. Liu HS, Gao JF, Zhao JJ (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J Phys Chem C117:10353–10359

    Google Scholar 

  17. Gao JF, Zhang JF, Liu HS (2013) Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 5:9785–9792

    Article  Google Scholar 

  18. Feng BJ, Li WB, Qiu JL et al (2015) Variable coupling strength of silicene on Ag(111). Chin Phys Lett 32:037302

    Article  Google Scholar 

  19. Feng Y, Feng BJ, Xie ZJ et al (2014) Observation of a flat band in silicene. Chin Phys Lett 31:127303

    Article  Google Scholar 

  20. Liu HS, Han NN, Zhao JJ (2014) Band gap opening in bilayer silicene by alkali metal interaction. J Phys Condens Matter 26:475303

    Article  Google Scholar 

  21. Chen L, Liu CC, Feng BJ et al (2012) Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett 109:056804

    Article  Google Scholar 

  22. Liu CC, Feng WX, Yao YG (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802

    Article  Google Scholar 

  23. Quhe R, Fei RX, Liu QH et al (2012) Tunable and sizable band gap in silicene by surface adsorption. Sci Rep 2:853

    Article  Google Scholar 

  24. Ezawa M (2012) Valley-polarized metals and quantum anomalous hall effect in silicene. Phys Rev Lett 109:055502

    Article  Google Scholar 

  25. Ezawa M (2013) Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys Rev Lett 110:026603

    Article  Google Scholar 

  26. Chiappe D, Grazianetti C, Tallarida G et al (2012) Local electronic properties of corrugated silicene phases. Adv Mater 24:5088–5093

    Article  Google Scholar 

  27. Enriquez H, Vizzini S, Kara A et al (2012) Silicene structures on silver surfaces. J Phys Condens Matter 24:314211

    Article  Google Scholar 

  28. Jamgotchian H, Colignon Y, Hamzaoui N et al (2012) Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J Phys Condens Matter 24:172001

    Article  Google Scholar 

  29. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    Article  Google Scholar 

  30. Liu Z, Suenaga K, Harris PJF et al (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501

    Article  Google Scholar 

  31. Li WX, Stampfl C, Scheffler M (2002) Oxygen adsorption on Ag(111): a density-functional theory investigation. Phys Rev B 65:075407

    Article  Google Scholar 

  32. Takeda K, Shiraishi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916–14922

    Article  Google Scholar 

  33. Lin CL, Arafune R, Kawahara K (2012) Structure of silicene grown on Ag(111). Appl Phys Express 5:45802

    Article  Google Scholar 

  34. Du Y, Zhuang JC, Liu HS et al (2014) Tuning the band gap in silicene by oxidation. ACS Nano 8:10019–10025

    Article  Google Scholar 

  35. Aufray B, Kara A, Vizzini S et al (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102

    Article  Google Scholar 

  36. Tchalala MR, Enriquez H, Mayne AJ et al (2013) Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1). Appl Phys Lett 102:083107

    Article  Google Scholar 

  37. Qiu JL, Fu HX, Xu Y et al (2015) Ordered and reversible hydrogenation of silicene. Phys Rev Lett 114:126101

    Article  Google Scholar 

  38. Arafune R, Lin CL, Kawahara K et al (2013) Structural transition of silicene on Ag(111). Surf Sci 608:297–300

    Article  Google Scholar 

  39. Shirai T, Shirasawa T, Hirahara T et al (2014) Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface. Phys Rev B 89:241403

    Article  Google Scholar 

  40. Mannix AJ, Kiraly B, Fisher BL et al (2014) Silicon growth at the two-dimensional limit on Ag(111). ACS Nano 8:7538–7547

    Article  Google Scholar 

  41. Feng JG, Wagner SR, Zhang PP (2015) Interfacial coupling and electronic structure of two-dimensional silicon growth on the Ag(111) surface at high temperature. Sci Rep 5:10310

    Article  Google Scholar 

  42. Liu ZL, Wang MX, Xu JP et al (2014) Various atomic structures of monolayer silicene fabricated on Ag(111). New J Phys 16:075006

    Article  Google Scholar 

  43. Kopnin NB, Sonin EB (2008) BSC superconductivity of Dirac electrons in graphene layers. Phys Rev Lett 100:246808

    Article  Google Scholar 

  44. Scalise E, Houssa M, Pourtois G et al (2013) Vibrational properties of silicene and germanene. Nano Res 6:19–28

    Article  Google Scholar 

  45. De Padova P, Ottaviani C, Quaresima C et al (2014) 24 h stability of thick multilayer silicene in air. 2D Mater 1:021003

    Article  Google Scholar 

  46. Molle A, Grazianetti C, Chiappe D et al (2013) Hindering the oxidation of silicene with non-reactive encapsulation. Adv Funct Mater 23:4340–4344

    Article  Google Scholar 

  47. Cinquata E, Scalise E, Chiappe D et al (2013) Getting through the nature of silicene: an sp2–sp3 two-dimensional silicon nanosheet. J Phys Chem C 117:16719–16724

    Article  Google Scholar 

  48. Zhuang JC, Xu X, Du Y et al (2015) Investigation of electron–phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys Rev B 91:161409

    Article  Google Scholar 

  49. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  Google Scholar 

  50. McMillan W (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167:331

    Article  Google Scholar 

  51. Si C, Liu Z, Duan WH et al (2013) First-principles calculations on the effect of doping and biaxial tensile strain on electron–phonon coupling in graphene. Phys Rev Lett 111:196802

    Article  Google Scholar 

  52. Chen L, Feng BJ, Wu KH (2013) Observation of a possible superconducting gap in silicene on Ag(111) surface. Appl Phys Lett 102:081602

    Article  Google Scholar 

  53. Tao L, Cinquata E, Chippe D et al (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231

    Article  Google Scholar 

  54. Le Lay G (2015) 2D materials: silicene transistors. Nat Nanotechnol 10:202–203

    Article  Google Scholar 

  55. Guzmán-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131

    Article  Google Scholar 

  56. Cahangirov S, Topsakal M, Aktürk E et al (2009) Two- and one-dimensional hneycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  Google Scholar 

  57. Lebègue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:115409

    Article  Google Scholar 

  58. Lin CL, Arafune R, Kawahara K et al (2013) Substrate-induced symmetry breaking in silicene. Phys Rev Lett 110:076801

    Article  Google Scholar 

  59. Tsoutsou D, Xenogiannopoulou E, Golias E et al (2013) Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111). Appl Phys Lett 103:231604

    Article  Google Scholar 

  60. Xu X, Zhuang JC, Du Y et al (2014) Effects of oxygen adsorption on the surface state of epitaxial silicene on Ag(111). Sci Rep 4:7543

    Article  Google Scholar 

  61. Avila J, De Padova P, Cho S et al (2013) Presence of gapped silicene-derived band in the prototypical (3 × 3) silicene phase on silver (111) substrates. J Phys Condens Matter 25:262001

    Article  Google Scholar 

  62. De Padova P, Vogt P, Resta A et al (2013) Evidence of Dirac fermions in multilayer silicene. Appl Phys Lett 102:163106

    Article  Google Scholar 

  63. De Padova P, Avila J, Resta A et al (2013) The quasiparticle band dispersion in epitaxial multilayer silicene. J Phys Condens Matter 25:382202

    Article  Google Scholar 

  64. Rutter GM, Crain JN, Guisinger NP et al (2007) Scattering and interference in epitaxial graphene. Science 317:219–222

    Article  Google Scholar 

  65. Feng BJ, Li H, Liu CC et al (2013) Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 7:9049–9054

    Article  Google Scholar 

  66. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  Google Scholar 

  67. Elias DC, Nair RR, Mohiuddin TMG et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613

    Article  Google Scholar 

  68. Balog R, Jørgensen B, Nilsson L et al (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater 9:315–319

    Article  Google Scholar 

  69. Andreev T, Barke I, Hövel H (2004) Adsorbed rare-gas layers on Au(111): shift of the Shockley surface state studied with ultraviolet photoelectron spectroscopy and scanning tunnelling spectroscopy. Phys Rev B 70:205426

    Article  Google Scholar 

  70. Osborn TH, Farajian AA (2014) Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res 7:945–952

    Article  Google Scholar 

  71. Konečný R, Doren DJ (1997) Adsorption of water on Si(100)-(2 × 1)—a study with density-functional theory. J Chem Phys 106:2426–2435

    Article  Google Scholar 

  72. Zhang HM, Gustafsson JB, Johansson LSO (2006) Surface atomic structure of Ag/Si(111)-(\( \sqrt 3 \times \sqrt 3 \)). Phys Rev B 74:201304

  73. Sato N, Nagao T, Hasegawa S (1999) Si(111)-(\( \sqrt 3 \times \sqrt 3 \))-Ag surface at low temperatures: symmetry breaking and surface twin boundaries. Surf Sci 442:65–73

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) through Discovery Project (DP 140102581), LIEF Grants (LE100100081 and LE110100099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Xu, X., Feng, H. et al. Honeycomb silicon: a review of silicene. Sci. Bull. 60, 1551–1562 (2015). https://doi.org/10.1007/s11434-015-0880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0880-2

Keywords

Navigation