Skip to main content
Log in

Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111)

Pt(111)表面上单层六方氮化硼(h-BN)结构的氧插层原位研究

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

The interface between a two-dimensional (2D) atomic crystal and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and catalytic reactions may occur. In this work, we demonstrate that oxygen intercalation and desorption occur at the interface between hexagonal boron nitride (h-BN) overlayer and Pt(111) surface by using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), photoemission electron microscopy, and low-energy electron microscopy. Furthermore, CO oxidation under the h-BN cover was also observed by NAP-XPS. The present results indicate that the nanospace under the 2D cover can be used for surface reactions, in which novel surface chemistry may be induced by the nanoconfinement effect.

摘要

二维层状材料与金属表面所形成的界面可被视为一个微型的纳米反应器, 为气体的扩散及催化反应的发生提供了空间。六方氮化硼(h-BN)是一类典型的二维层状材料, 本文Pt(111)表面生长h-BN单层结构, 利用低能电子显微镜(LEEM)、光电发射电子显微镜(PEEM)和近常压X射线光电子能谱(NAP-XPS)等表面技术原位研究h-BN/Pt(111)表面暴露O2气氛的界面结构变化, 证实氧(O)在h-BN结构下的插层和脱附过程; 发现在相对较高的温度及较低的h-BN覆盖度更有利于气体在界面处的扩散. 此外, 我们还观察到在h-BN“盖子”限域下的Pt表面催化CO氧化反应.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  Google Scholar 

  2. Liu L, Feng YP, Shen ZX et al (2003) Structural and electronic properties of h-BN. Phys Rev B 68:104102

    Article  Google Scholar 

  3. Zhang XW, Yin ZG, Si FT (2014) Electrical properties of sulfur-implanted cubic boron nitride thin films. Chin Sci Bull 59:1280–1284

    Article  Google Scholar 

  4. Gao Y, Ren W, Ma T et al (2013) Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 7:5199–5206

    Article  Google Scholar 

  5. Lu J, Yeo PSE, Zheng Y et al (2013) Step flow versus mosaic film growth in hexagonal boron nitride. J Am Chem Soc 135:2368–2373

    Article  Google Scholar 

  6. Gao YB, Zhang YF, Chen PC et al (2013) Towards single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Lett 13:3439–3443

    Article  Google Scholar 

  7. Corso M, Auwärter W, Muntwiler M et al (2004) Boron nitride nanomesh. Science 303:217–220

    Article  Google Scholar 

  8. Laskowski R, Blaha P (2010) Ab initio study of h-BN nanomeshes on Ru(001), Rh(111), and Pt(111). Phys Rev B 81:075418

    Article  Google Scholar 

  9. Preobrajenski AB, Vinogradov AS, Ng ML et al (2007) Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys Rev B 75:245412

    Article  Google Scholar 

  10. Yoon T, Mun JH, Cho BJ et al (2014) Penetration and lateral diffusion characteristics of polycrystalline graphene barriers. Nanoscale 6:151–156

    Article  Google Scholar 

  11. Cun H, Iannuzzi M, Hemmi A et al (2013) Immobilizing individual atoms beneath a corrugated single layer of boron nitride. Nano Lett 13:2098–2103

    Article  Google Scholar 

  12. Brugger T, Ma H, Iannuzzi M et al (2010) Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew Chem Int Ed 49:6120–6124

    Article  Google Scholar 

  13. Preobrajenski AB, Ng ML, Vinogradov NA et al (2009) Impact of oxygen coadsorption on intercalation of cobalt under the h-BN nanomesh. Nano Lett 9:2780–2787

    Article  Google Scholar 

  14. Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal-graphene interaction by reactive intercalation. J Am Chem Soc 132:8175–8179

    Article  Google Scholar 

  15. Jin L, Fu Q, Dong AY et al (2014) Surface chemistry of CO on Ru(0001) under the confinement of graphene cover. J Phys Chem C 118:12391–12398

    Article  Google Scholar 

  16. Mu RT, Fu Q, Jin L et al (2012) Visualizing chemical reactions confined under graphene. Angew Chem Int Ed 51:4856–4859

    Article  Google Scholar 

  17. Zhang YH, Weng XF, Li H et al (2015) Hexagonal boron nitride cover on Pt(111): a new route to tune molecule metal interaction and metal-catalyzed reactions. Nano Lett 15:3616–3623

    Article  Google Scholar 

  18. Yao YX, Fu Q, Zhang YY et al (2014) Graphene cover promoted metal catalyzed reactions. Proc Natl Acad Sci USA 111:17023–17028

    Article  Google Scholar 

  19. Goriachko A, Zakharov AA, Over H (2008) Oxygen-etching of h-BN/Ru(0001) nanomesh on the nano- and mesoscopic scale. J Phys Chem C 112:10423–10427

    Article  Google Scholar 

  20. Yang Y, Fu Q, Wei MM et al (2015) Stability of BN/metal interfaces in gaseous atmosphere. Nano Res 8:227–237

    Article  Google Scholar 

  21. Cofer CG, Economy J (1995) Oxidative and hydrolytic stability of boron nitride: a new approach to improving the oxidation resistance of carbonaceous structures. Carbon 33:389–395

    Article  Google Scholar 

  22. Fu Q, Bao XH (2009) Progress in graphene chemistry. Chin Sci Bull (Chin Ver) 54:2665–2667 (in Chinese)

    Article  Google Scholar 

  23. Zhang H, Fu Q, Cui Y et al (2009) Fabrication of metal nanoclusters on graphene grown on Ru(0001). Chin Sci Bull 54:2446–2450

    Article  Google Scholar 

  24. Jin L, Fu Q, Mu RT et al (2011) Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys Chem Chem Phys 13:16655–16660

    Article  Google Scholar 

  25. Song L, Ci LJ, Lu H et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  Google Scholar 

  26. Starr DE, Liu Z, Hävecker M et al (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42:5833–5857

    Article  Google Scholar 

  27. Salmeron M, Schlögl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  Google Scholar 

  28. Ćavar E, Westerström R, Mikkelsen A et al (2008) A single h-BN layer on Pt(111). Surf Sci 602:1722–1726

    Article  Google Scholar 

  29. Tao F, Dag S, Wang LW et al (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327:850–853

    Article  Google Scholar 

  30. Park JH, Park JC, Yun SJ et al (2014) Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8:8520–8528

    Article  Google Scholar 

  31. Grånäs E, Andersen M, Arman MA et al (2013) CO intercalation of graphene on Ir(111) in the millibar regime. J Phys Chem C 117:16438–16447

    Article  Google Scholar 

  32. Larciprete R, Ulstrup S, Lacovig P et al (2012) Oxygen switching of the epitaxial graphene metal interaction. ACS Nano 6:9551–9558

    Article  Google Scholar 

  33. Starodub E, Bartelt NC, McCarty KF (2010) Oxidation of graphene on metals. J Phys Chem C 114:5134–5140

    Article  Google Scholar 

  34. Grånäs E, Knudsen J, Schröder UA et al (2012) Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges. ACS Nano 6:9951–9963

    Article  Google Scholar 

  35. Sutter P, Albrecht P, Tong X (2013) Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J Phys Chem C 117:6320–6324

    Article  Google Scholar 

  36. Hoffmann R (1988) A chemical and theoretical way to look at bonding on surfaces. Rev Mod Phys 60:601

    Article  Google Scholar 

  37. Fu Q, Li WX, Yao YX et al (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328:1141–1144

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21222305, 21373208, and 21033009), the National Basic Research Program of China (2011CB932704, 2013CB933100, and 2013CB834603), and the Key Research Program of the Chinese Academy of Science (KGZD-EW-T05). The Advanced Light Source and beamlines 11.0.2 and 9.3.1 are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the US Department of Energy under contracts No. DE-AC02-05CH11231.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Additional information

Yanhong Zhang and Mingming Wei have contributed equally to this work.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, M., Fu, Q. et al. Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111). Sci. Bull. 60, 1572–1579 (2015). https://doi.org/10.1007/s11434-015-0875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0875-z

Keywords

关键词

Navigation