Science Bulletin

, Volume 60, Issue 20, pp 1768–1777 | Cite as

Fossil seeds of Euryale (Nymphaeaceae) indicate a lake or swamp environment in the late Miocene Zhaotong Basin of southwestern China

  • Yongjiang Huang
  • Xueping Ji
  • Tao Su
  • Li Wang
  • Chenglong Deng
  • Wenqi Li
  • Hongfen Luo
  • Zhekun Zhou
Article Earth Sciences

Abstract

Euryale (Nymphaeaceae) is a monotypic genus distributed in eastern Asia, but fossils in its native distribution are sparse as compared to Europe where the genus has disappeared. Here, we describe a new fossil species, Euryale yunnanensis sp. nov., from the late Miocene Zhaotong Basin in southwestern China on the basis of seed remains. Characteristics including an ellipsoidal to almost spherical shape, a smooth surface, a germination cap that covers the micropyle, the separation of the hilum and germination cap (micropyle), elliptic testa surface cells with undulate margins and thickened cell walls collectively indicate a close affinity with the genus Euryale in Nymphaeaceae. Comparisons of seed morphology and anatomy demonstrate that the newly described fossil species differs from modern and other fossil species of Euryale and thus verify the assignment to a new fossil species. As the modern Euryale is an aquatic plant, preferably living in swamps and lakes with shallow and stable water, we hypothesize that a lake and/or swamp environment with shallow water was present near Shuitangba in the Zhaotong Basin, where the Shuitangba hominoid lived during the late Miocene. This inference is generally consistent with paleoenvironmental data extracted from avian, fish, frog, turtle and crocodile fossils, as well as from aquatic pollen. The fossil history suggests a comparatively recent (Miocene) emergence of Euryale, which is roughly in agreement with the divergence time inferred from the molecular information.

Keywords

Euryale Nymphaeaceae Aquatic Late Miocene Zhaotong Basin Southwestern China 

晚中新世的芡实属种子表明我国西南昭通盆地湖泊或湿地的古环境

摘要

芡实属(Euryale)为睡莲科(Nymphaeaceae)的单种属,分布于东亚,但其化石记录在东亚却不多。本研究基于产自中国西南昭通盆地晚中新世的种子化石,建立和描述了芡实属一化石新种:云南芡实(Euryale yunnanensis sp. nov.)。云南芡实的种子椭圆形至近圆形,表面光滑,种皮表面细胞椭圆形,细胞边缘波浪形,细胞壁加厚,珠孔被一圆形帽状结构覆盖,珠孔与种脐分开,这些特征使云南芡实区分于芡实属的现生种和其它化石种。芡实属为水生植物,一般生活在浅水区或湿地,结合之前报道的涉禽、游禽、鱼、龟、青蛙和鳄鱼等动物化石,推测昭通盆地在晚中新世时具有浅水湖或湿地环境,这也可能是古猿生活的环境特征。此外,化石历史表明,芡实属在睡莲科较晚出现,与分子研究结果一致。

关键词

芡实属 睡莲科 水生植物 晚中新世 昭通盆地 中国西南 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31300187, 31300188), the Natural Science Foundation of Yunnan Province (2010CC010), Zhaotong Institute of Cultural Relics, Cultural Bureau of Zhaoyang District Government and an Excavation Annual Foundation of 2015 from the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. Fossil collection was assisted by doctoral students of the Palaeoecology Research Group from Kunming Institute of Botany, Chinese Academy of Sciences, and members from Yunnan Institute of Cultural Relics and Archaeology, Zhaotong Institute of Cultural Relics, and Zhaoyang Museum; extant seeds of Euryale ferox were provided by the Herbarium of Institute of Botany and prepared by Dr. Xiao-Guo Xiang from Institute of Botany, Chinese Academy of Sciences; seed observations with the Zeiss binocular microscope and SEM were performed in the Central Lab of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences.

References

  1. 1.
    Les DH, Schneider EL, Padgett DJ et al (1999) Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non-molecular, rbcL, matK, and 18S rDNA data. Syst Bot 24:28–46CrossRefGoogle Scholar
  2. 2.
    Yoo MJ, Bell CD, Soltis PS et al (2005) Divergence times and historical biogeography of Nymphaeales. Syst Bot 30:693–704CrossRefGoogle Scholar
  3. 3.
    Jha V, Kargupta AN, Dutta RN et al (1991) Utilization and conservation of Euryale ferox Sablisbery in Mithila (North Bihar), India. Aquat Bot 39:295–314CrossRefGoogle Scholar
  4. 4.
    Fu D, Wiersema JH, Padgett D (2001) Nymphaeaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 6. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp 115–118Google Scholar
  5. 5.
    Jain A, Singh HB, Kanjilal PB (2010) Economics of Foxnut (Euryale ferox Salisb.) cultivation: a case study from Manipur in North eastern India. Indian J Nat Prod Resour 1:63–67Google Scholar
  6. 6.
    Baskin CC, Baskin JM (2007) Nymphaeaceae: a basal angiosperm family (ANITA grade) with a fully developed embryo. Seed Sci Res 17:293–296Google Scholar
  7. 7.
    Collinson ME (1980) Recent and Tertiary seeds of the Nymphaeaceae sensu lato with a revision of Brasenia ovula (Brong.) Reid and Chandler. Ann Bot 46:603–632Google Scholar
  8. 8.
    Chen I, Manchester SR, Chen ZD (2004) Anatomical preserved seeds of Nuphar (Nymphaeaceae) from the early Eocene of Wutu, Shandong Province, China. Am J Bot 91:1265–1272CrossRefGoogle Scholar
  9. 9.
    Friis EM, Pedersen KR, Balthazar M et al (2009) Monetianthus mirus gen. et sp. nov., a Nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170:1086–1101CrossRefGoogle Scholar
  10. 10.
    Gandolfo MA, Nixon KC, Crepet WL (2004) Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early Angiosperms. Proc Natl Acad Sci USA 101:8056–8060CrossRefGoogle Scholar
  11. 11.
    Weber CA (1907) Euryale europaea nov. sp. foss. Berichte der Deutschen Bot Gesell B 25:150–157 (in German)Google Scholar
  12. 12.
    Sukatscheff W (1908) Uber das Vorkommen der Samen von Euryale ferox Salisb. in einer interglazialen Ablagerung in Russland. Ber Deutsch Bot Gesell B 26:132–137 (in German)Google Scholar
  13. 13.
    Reid C, Reid EM (1915) The Pliocene floras of the Dutch-Prussian Border. Mededeelingen van de Rijksopsporing van Delftstoffen 6:1–178Google Scholar
  14. 14.
    Gripp K, Beyle M (1937) Das Interglazial von Billstedt (Öjendorf). Mitt Geol Staatsinstitut Hamburg 16:19–36 (in German)Google Scholar
  15. 15.
    Miki S (1937) Plant fossils from the Stegodon Beds and the Elephas Beds near Akashi. Jpn J Bot 8:303–341Google Scholar
  16. 16.
    Szafer W (1954) Plioceńska flora okolic Czorsztyna. Prace Inst Geol 11:5–238 (in Polish)Google Scholar
  17. 17.
    Raniecka-Bobrowska J (1959) Tertiary seed-flora from Konin. Biul Inst Geol 130:159–252 (in Polish)Google Scholar
  18. 18.
    Dorofeev PI (1963) The Tertiary floras of western Siberia. Iz-vo Akademii nauk SSSR, Moscow/Leningrad, pp 175–177 (in Russian)Google Scholar
  19. 19.
    Tralau H (1963) Asiatic Dicotyledonous affinities in the Cainozoic Flora of Europe. Kungl Svensk Vetenskpsakademiens Handlingar 9:7–87Google Scholar
  20. 20.
    Kempf EK (1966) Das Holstein-Interglazial von Tönisberg im Rahmen des niederrheinischen Pleistozäns. Eiszeitalter u Gegenwart 17:5–60 (in German)Google Scholar
  21. 21.
    Sobolewska M (1970) Euryale ferox Salisb. in the Pleistocene of Poland. Acta Palaeobot 6:13–23Google Scholar
  22. 22.
    Zhang MS, Liu SQ (1999) Two species of late Pleistocene wood fossils from Putuoshan Island, Zhejiang Province. Acta Palaeontol Sin 38:469–476 (in Chinese)Google Scholar
  23. 23.
    Li CS, Yi TM, Yao YF (2009) Vegetation succession and environmental changes in China (vol 2. Cenozoic Floras and Climates in Northern China). Jiangsu Science and Technology Publishing House, Nanjing (in Chinese)Google Scholar
  24. 24.
    Taylor W, DeVore ML, Pigg KB (2006) Susiea newsalemae gen. et sp. nov. (Nymphaeaceae): Euryale-like seeds from the Late Paleocene Abulmont flora, North Dakota, USA. Int J Plant Sci 167:1271–1278CrossRefGoogle Scholar
  25. 25.
    Biasatti D, Wang Y, Gao F et al (2012) Paleoecologies and paleoclimates of late Cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes. J Asian Earth Sci 44:48–61CrossRefGoogle Scholar
  26. 26.
    Li SH, Deng CL, Yao HT et al (2013) Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J Geophys Res Solid Earth 118:791–807CrossRefGoogle Scholar
  27. 27.
    Ji XP, Jablonski NG, Su DF et al (2013) Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chin Sci Bull 58:3771–3779CrossRefGoogle Scholar
  28. 28.
    Zhang YG, Ji XP, Jablongski NG et al (2013) Stratigraphic significance of the avian fauna from late Miocene of Zhaotong region, Yunnan Province. Acta Palaeontol Sin 52:281–287 (in Chinese)Google Scholar
  29. 29.
    Chang L, Guo ZT, Deng CL et al (2015) Pollen evidence of the palaeoenvironments of Lufengpithecus lufengensis in the Zhaotong Basin, southeastern margin of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 435:95–104CrossRefGoogle Scholar
  30. 30.
    Jablonski NG, Su DF, Flynn LJ et al (2014) The site of Shuitangba (Yunnan, China) preserves a unique, terminal Miocene fauna. J Vertebr Paleontol 34:1251–1257CrossRefGoogle Scholar
  31. 31.
    Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene Period. In: Gradstein FM, Ogg JG, Schmitz MD et al (eds) The Geologic Time Scale 2012. Elsevier, Amsterdam, pp 923–978CrossRefGoogle Scholar
  32. 32.
    Taylor DW (2008) Phylogenetic analysis of Cabombaceae and Nymphaeaceae based on vegetation and leaf architecture characters. Taxon 57:1082–1095Google Scholar
  33. 33.
    Liu YL, Xu LM, Ni XM et al (2005) Phylogeny of the Nymphaeaceae inferred from ITS sequences. Acta Phytotaxon Sin 43:22–30 (in Chinese)Google Scholar
  34. 34.
    Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163CrossRefGoogle Scholar
  35. 35.
    Löhne C, Wiersema JH, Borsch T (2009) The unusual Ondinea, actually just another Australian water-lily of Nymphaea subg. Anecphya (Nymphaeaceae). Willdenowia 39:55–58CrossRefGoogle Scholar
  36. 36.
    Borsch T, Löhne C, Wiersema J (2008) Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon 57:1052–1081Google Scholar
  37. 37.
    Dkhar J, Kumaria S, Rama Rao S et al (2012) Sequence characteristics and phylogenetic implications of the nrDNA internal transcribed spacers (ITS) in the genus Nymphaea with focus on some Indian representatives. Plant Syst Evol 298:93–108CrossRefGoogle Scholar
  38. 38.
    Dahlgren RMT (1980) A revised system of classification of angiosperms. Bot J Linn Soc 80:91–124CrossRefGoogle Scholar
  39. 39.
    Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359CrossRefGoogle Scholar
  40. 40.
    Thorne RF (1992) Classification and geography of the flowering plants. Bot Rev 58:225–327CrossRefGoogle Scholar
  41. 41.
    Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  42. 42.
    Miki S (1960) Nymphaeaceae remains in Japan, with new fossil genus Eoeuryale. J Inst Polytech Osaka Univ Ser D Biol 11:63–78Google Scholar
  43. 43.
    Dorofeev PI (1973) Systematics of ancestral forms of Brasenia. Paleontol J 2:212–227Google Scholar
  44. 44.
    Yamada T, Imaichi R, Kato M (2001) Developmental morphology of ovules and seeds of Nymphaeales. Am J Bot 88:963–974CrossRefGoogle Scholar
  45. 45.
    Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573CrossRefGoogle Scholar
  46. 46.
    Crane PR, Manchester SR, Dilcher DL (1990) A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geol 1418:1–63Google Scholar
  47. 47.
    Spitzelberger G (1989) Die Miozänfungstelle Goldern bei Landshut (Niederbayern). Geol Bavarica 94:371–407 (in German)Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yongjiang Huang
    • 1
  • Xueping Ji
    • 2
  • Tao Su
    • 3
  • Li Wang
    • 3
  • Chenglong Deng
    • 4
  • Wenqi Li
    • 5
  • Hongfen Luo
    • 6
  • Zhekun Zhou
    • 1
    • 3
  1. 1.Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Yunnan Institute of Cultural Relics and Archaeology and Research Center for Southeast Asian ArcheologyKunmingChina
  3. 3.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
  4. 4.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  5. 5.Zhaotong Institute of Cultural RelicsZhaotongChina
  6. 6.Zhaoyang MuseumZhaotongChina

Personalised recommendations