Science Bulletin

, Volume 60, Issue 16, pp 1416–1425 | Cite as

Prenatal glucocorticoid contributed to rat lung dysplasia is related to asymmetric dimethylarginine/nitric oxide pathway

  • Yu-Chieh Chen
  • Li-Tung Huang
  • You-Lin Tain
  • Chih-Cheng Chen
  • Jiunn-Ming Sheen
  • Mao-Meng Tiao
  • Chih-Min Tsai
  • Ho-Chang Kuo
  • Chao-Cheng Huang
  • Kow-Aung Chang
  • Hong-Ren YuEmail author
Article Life & Medical Sciences


Prenatal glucocorticoids (GCs) have been used to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome of the premature. Pulmonary surfactant induction has been regarded as the most important effect of prenatal GCs. However, report about the prolonged effects of prenatal GCs on the development of rat lung is of limited. In this study, we tried to investigate the acute and chronic modulation effects of prenatal dexamethasone (DEX) to asymmetric dimethylarginine (ADMA)/nitric oxide (NO) signal pathway of lung tissue. Pregnant Sprague Dawley rats at gestational day 14–20 were administered i.p. DEX (0.1 mg kg−1 d−1). Acute programming effects of prenatal DEX were assessed at postnatal day 7, and long-term programming effects of offspring were assessed at day 120. We found that repetitive prenatal DEX exposure contributes to DNA oxidative damage and alveolar tissue dysplasia. Prenatal DEX treatment decreased ADMA and increased iNOS expression. Prenatal DEX treatment also increased TNF-α transcript expression and decreased HDAC2 protein expression at acute stage. In conclusion, repetitive prenatal DEX has prolonged stress damage effects on lung tissue.


Prenatal glucocorticoids ADMA DNA oxidative damage TNF-α HDAC2 Lung dysplasia 



This work was supported in part by Grants CMRPG8B0141, CMRPG8B0142 (H. R. Yu), CMRPG8C0171 (C.H. Kang) and NSC 102-2314-B-182A-042-MY3 (H. R. Yu) from the National Science Council.

Conflict of interest

The authors declare no commercial or financial conflict of interest.


  1. 1.
    Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 97:11–25CrossRefGoogle Scholar
  2. 2.
    Liggins GC (1994) The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 6:141–150CrossRefGoogle Scholar
  3. 3.
    Gross I (1990) Regulation of fetal lung maturation. Am J Physiol 259:L337–L344Google Scholar
  4. 4.
    Vyas J, Kotecha S (1997) Effects of antenatal and postnatal corticosteroids on the preterm lung. Arch Dis Child Fetal Neonatal Ed 77:F147–F150CrossRefGoogle Scholar
  5. 5.
    Muglia LJ, Bae DS, Brown TT et al (1999) Proliferation and differentiation defects during lung development in corticotropin-releasing hormone-deficient mice. Am J Respir Cell Mol Biol 20:181–188CrossRefGoogle Scholar
  6. 6.
    Lin YJ, Markham NE, Balasubramaniam V et al (2005) Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats. Pediatr Res 58:22–29CrossRefGoogle Scholar
  7. 7.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777CrossRefGoogle Scholar
  8. 8.
    Arima M, Kumai T, Asoh K et al (2008) Effects of antenatal dexamethasone on antioxidant enzymes and nitric oxide synthase in the rat lung. J Pharmacol Sci 106:242–248CrossRefGoogle Scholar
  9. 9.
    You JM, Yun SJ, Nam KN et al (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87:440–447CrossRefGoogle Scholar
  10. 10.
    Behl C, Lezoualc’h F, Trapp T et al (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138:101–106CrossRefGoogle Scholar
  11. 11.
    Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151(Suppl 3):U49–U62CrossRefGoogle Scholar
  12. 12.
    Yu HR, Kuo HC, Chen CC et al (2014) Prenatal dexamethasone exposure in rats results in long-term epigenetic histone modifications and tumour necrosis factor-alpha production decrease. Immunology 143:651–660CrossRefGoogle Scholar
  13. 13.
    Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to beta-actin for western blots. Anal Biochem 440:186–188CrossRefGoogle Scholar
  14. 14.
    Romero-Calvo I, Ocon B, Martinez-Moya P et al (2010) Reversible ponceau staining as a loading control alternative to actin in western blots. Anal Biochem 401:318–320CrossRefGoogle Scholar
  15. 15.
    Kreider ML, Tate CA, Cousins MM et al (2006) Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Neuropsychopharmacology 31:12–35Google Scholar
  16. 16.
    Lui CC, Hsu MH, Kuo HC et al (2015) Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev Neurosci 37:105–114CrossRefGoogle Scholar
  17. 17.
    Wright RJ (2010) Perinatal stress and early life programming of lung structure and function. Biol Psychol 84:46–56CrossRefGoogle Scholar
  18. 18.
    Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-ohdg): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139CrossRefGoogle Scholar
  19. 19.
    Ichiseki T, Kaneuji A, Katsuda S et al (2005) DNA oxidation injury in bone early after steroid administration is involved in the pathogenesis of steroid-induced osteonecrosis. Rheumatology 44:456–460CrossRefGoogle Scholar
  20. 20.
    Francisco GE, Honigberg IL, Stewart JT et al (1984) In vitro and in vivo bioequivalence of commercial prednisone tablets. Biopharm Drug Dispos 5:335–344CrossRefGoogle Scholar
  21. 21.
    Citirik M, Dilsiz N, Batman C et al (2009) Comparative toxicity of 4 commonly used intravitreal corticosteroids on rat retina. Can J Ophthalmol 44:e3–e8CrossRefGoogle Scholar
  22. 22.
    Walther FJ, Jobe AH, Ikegami M (1998) Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J Appl Physiol 85:273–278Google Scholar
  23. 23.
    Lund E, Oldenburg AR, Delbarre E et al (2013) Lamin a/c-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res 23:1580–1589CrossRefGoogle Scholar
  24. 24.
    Spann TP, Goldman AE, Wang C et al (2002) Alteration of nuclear lamin organization inhibits rna polymerase ii-dependent transcription. J Cell Biol 156:603–608CrossRefGoogle Scholar
  25. 25.
    Lund E, Collas P (2013) Nuclear lamins: making contacts with promoters. Nucleus 4:424–430CrossRefGoogle Scholar
  26. 26.
    Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin b. Cell 51:383–392CrossRefGoogle Scholar
  27. 27.
    Ito K, Caramori G, Lim S et al (2002) Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 166:392–396CrossRefGoogle Scholar
  28. 28.
    Niu Y, DesMarais TL, Tong Z et al (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28CrossRefGoogle Scholar
  29. 29.
    Footitt J, Mallia P, Durham AL et al (2015) Oxidative and nitrosative stress and histone deacetylase-2 activity in exacerbations of chronic obstructive pulmonary disease. Chest 14:2637. doi: 10.1378/chest.14-2637 Google Scholar
  30. 30.
    Wiegman CH, Li F, Clarke CJ et al (2014) A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci 126:425–440CrossRefGoogle Scholar
  31. 31.
    Sundar IK, Yao H, Rahman I (2013) Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 18:1956–1971CrossRefGoogle Scholar
  32. 32.
    Mercado N, Thimmulappa R, Thomas CM et al (2011) Decreased histone deacetylase 2 impairs nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298CrossRefGoogle Scholar
  33. 33.
    Lewis EC, Blaabjerg L, Storling J et al (2011) The oral histone deacetylase inhibitor itf2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med 17:369–377CrossRefGoogle Scholar
  34. 34.
    Larsen L, Tonnesen M, Ronn SG et al (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–789CrossRefGoogle Scholar
  35. 35.
    Jeong Y, Du R, Zhu X et al (2014) Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J Leukoc Biol 95:651–659CrossRefGoogle Scholar
  36. 36.
    Yu Z, Zhang W, Kone BC (2002) Histone deacetylases augment cytokine induction of the inos gene. J Am Soc Nephrol 13:2009–2017CrossRefGoogle Scholar
  37. 37.
    Holownia A, Mroz RM, Wielgat P et al (2013) Altered histone deacetylase activity and inos expression in cells isolated from induced sputum of copd patients treated with tiotropium. Adv Exp Med Biol 788:1–6CrossRefGoogle Scholar
  38. 38.
    Stempelj M, Kedinger M, Augenlicht L et al (2007) Essential role of the jak/stat1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem 282:9797–9804CrossRefGoogle Scholar
  39. 39.
    Ryan CA, Finer NN (1995) Antenatal corticosteroid therapy to prevent respiratory distress syndrome. J Pediatr 126:317–319CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yu-Chieh Chen
    • 1
  • Li-Tung Huang
    • 1
  • You-Lin Tain
    • 1
  • Chih-Cheng Chen
    • 1
  • Jiunn-Ming Sheen
    • 1
  • Mao-Meng Tiao
    • 1
  • Chih-Min Tsai
    • 1
  • Ho-Chang Kuo
    • 1
  • Chao-Cheng Huang
    • 2
  • Kow-Aung Chang
    • 3
  • Hong-Ren Yu
    • 1
    Email author
  1. 1.Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical ScienceChang Gung University College of MedicineKaohsiungKaohsiung
  2. 2.Department of Pathology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical ScienceChang Gung University College of MedicineKaohsiungKaohsiung
  3. 3.Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical ScienceChang Gung University College of MedicineKaohsiungKaohsiung

Personalised recommendations