Skip to main content
Log in

Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L−1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplatform for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with free DOX·HCl. Under a 3.0-T MRI scanner, Mn-SPIO/DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T 2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s−1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.

摘要

多功能纳米颗粒能同时结合诊断和治疗试剂,有望实现肿瘤诊疗的一体化。本文制备了基于葡聚糖和超顺磁氧化铁纳米颗粒的多功能纳米复合物DOX/Mn-SPIO,用于药物传递和磁共振成像(MRI)。通过接枝硬脂酸到糖单元骨架上,获得临界胶束浓度为1.8 mg L−1的两亲性葡聚糖。经自组装的葡聚糖胶束可在疏水核负载抗肿瘤药物阿霉素和超顺磁氧化锰铁纳米晶体,形成粒径约100 nm的纳米复合物。体外细胞实验表明,该DOX/Mn-SPIO纳米复合物能作为有效传递抗肿瘤药物阿霉素的多功能纳米载体。相比游离的阿霉素药物,激光共聚焦显微镜结果表明该复合物在标记2 h时可高效进入人乳腺癌耐药细胞MCF-7/Adr。使用临床3 T磁共振扫描仪成像,该复合物标记的细胞MRI图像与对照组显示出明显对比度。其T 2弛豫率达33.9 s−1,显著高于对照组的2.3 s−1。研究表明该葡聚糖纳米胶束复合物作为诊疗一体化载体能在低剂量治疗MCF-7/Adr细胞的同时进行MRI成像,为MCF-7/Adr肿瘤细胞的诊疗提供了一种有效方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoon TJ, Yu KN, Kim E et al (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2:209–215

    Article  Google Scholar 

  2. Chu M, Song X, Cheng D et al (2006) Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation. Nanotechnology 17:3268

    Article  Google Scholar 

  3. Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78:5627–5632

    Article  Google Scholar 

  4. Mulder WJM, Koole R, Brandwijk RJ et al (2005) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    Article  Google Scholar 

  5. Quarta A, Di Corato R, Manna L et al (2008) Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies. J Am Chem Soc 130:10545–10555

    Article  Google Scholar 

  6. Wang D, Su H, Liu Y et al (2012) Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Chin Sci Bull 57:4012–4018

    Article  Google Scholar 

  7. Yang F, Li Y, Chen Z et al (2009) The preparation and application of microbubble contrast agent combining ultrasound imaging and magnetic resonance imaging. Chin Sci Bull 54:2934–2939

    Article  Google Scholar 

  8. Wang X, Zhang J, Yang X et al (2014) In vivo assessment of hepatotoxicity, nephrotoxicity and biodistribution using 3-aminopropyltriethoxysilane-coated magnetic nanoparticles (APTS-MNPs) in ICR mice. Chin Sci Bull 59:1800–1808

    Article  Google Scholar 

  9. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  Google Scholar 

  10. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  11. Luo JP, Qu SX, Liu JT et al (2013) Rapid detection of Cyfra 21-1 by optical-biosensing based on chemiluminescence immunoassay using bio-functionalized magnetic nanocomposites. Chin Sci Bull 58:2567–2569

    Article  Google Scholar 

  12. Knipe JM, Peppas NA (2014) Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regener Biomater 1:57–65

    Article  Google Scholar 

  13. Cai TT, Lei Q, Yang B et al (2014) Utilization of h-bond interaction of nucleobase uralic with antitumor methotrexate to design drug carrier with ultrahigh loading efficiency and ph-responsive drug release. Regener Biomater 1:27–35

    Article  Google Scholar 

  14. Nasongkla N, Bey E, Ren J et al (2006) Multifunctional polymeric micelles as cancer-targeted, mri-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  Google Scholar 

  15. Guo R, Zhang L, Qian H et al (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26:5428–5434

    Article  Google Scholar 

  16. Bhaskar S, Tian F, Stoeger T et al (2010) Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3

    Article  Google Scholar 

  17. Zhou J, Huang L, Wang W et al (2009) Prostate cancer targeted MRI nanoprobe based on superparamagnetic iron oxide and copolymer of poly (ethylene glycol) and polyethyleneimin. Chin Sci Bull 54:3137–3146

    Article  Google Scholar 

  18. Xie J, Liu G, Eden HS et al (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts Chem Res 44:883–892

    Article  Google Scholar 

  19. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  Google Scholar 

  20. Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302:605–608

    Article  Google Scholar 

  21. Yan G, Zhuo R (2001) Research progress of magnetic resonance imaging contrast agents. Chin Sci Bull 46:1233–1237

    Article  Google Scholar 

  22. Wang YX, Hussain S, Krestin G (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  Google Scholar 

  23. Thorek D, Chen A, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    Article  Google Scholar 

  24. Feng L, Song Y, Wan M et al (2001) Research progress of magnetic iron oxide nanoparticles. Chin Sci Bull 46:1321–1325

    Article  Google Scholar 

  25. Jin RR, Lin BB, Li DY et al (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  Google Scholar 

  26. Tromsdorf UI, Bigall NC, Kaul MG et al (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7:2422–2427

    Article  Google Scholar 

  27. Lee JH, Huh YM, Jun YW et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  Google Scholar 

  28. Hong G, Yuan R, Liang B et al (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices 10:693–700

    Article  Google Scholar 

  29. Yang X, Grailer JJ, Rowland IJ et al (2010) Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31:9065–9073

    Article  Google Scholar 

  30. Lu J, Ma SL, Sun JY et al (2009) Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30:2919–2928

    Article  Google Scholar 

  31. Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    Article  Google Scholar 

  32. Savic R, Eisenberg A, Maysinger D (2006) Block copolymer micelles as delivery vehicles of hydrophobic drugs: micelle-cell interactions. J Drug Target 14:343–355

    Article  Google Scholar 

  33. Nasongkla N, Shuai X, Ai H et al (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed 43:6323–6327

    Article  Google Scholar 

  34. Shuai XT, Ai H, Nasongkla N et al (2004) Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 98:415–426

    Article  Google Scholar 

  35. Cao YW, Gao M, Chen C et al (2015) Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 26:115101–115110

    Article  Google Scholar 

  36. Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Design 12:4669–4684

    Article  Google Scholar 

  37. Chen YQ, Cao J, Zhu HY et al (2013) Synthesis and evaluation of methionine and folate co-decorated chitosan self-assembly polymeric micelles as a potential hydrophobic drug-delivery system. Chin Sci Bull 58:2379–2386

    Article  Google Scholar 

  38. Ai H, Flask C, Weinberg B et al (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949–1952

    Article  Google Scholar 

  39. Liu G, Wang ZY, Lu J et al (2011) Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials 32:528–537

    Article  Google Scholar 

  40. de Jonge E, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29:1261–1267

    Article  Google Scholar 

  41. Messmore HL, Jeske WP, Wehrmacher WH et al (2003) Benefit-risk assessment of treatments for heparin-induced thrombocytopenia. Drug Saf 26:625–641

    Article  Google Scholar 

  42. Ikeda Y, Charef S, Ouidja MO et al (2011) Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides. Biomaterials 32:769–776

    Article  Google Scholar 

  43. Zhu Y, Tong WJ, Gao CY et al (2008) Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking. J Mater Chem 18:1153–1158

    Article  Google Scholar 

  44. McArthur SL, McLean KM, Kingshott P et al (2000) Effect of polysaccharide structure on protein adsorption. Colloids Surf B 17:37–48

    Article  Google Scholar 

  45. Sun SH, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  Google Scholar 

  46. Su HY, Liu YH, Wang D et al (2013) Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials 34:1193–1203

    Article  Google Scholar 

  47. Wang QY, Su HY, Xia CC et al (2009) Amphiphilic dextran/magnetite nanocomposites as magnetic resonance imaging probes. Chin Sci Bull 54:2925–2933

    Article  Google Scholar 

  48. Karukstis KK, Thompson EHZ, Whiles JA et al (1998) Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem 73:249–263

    Article  Google Scholar 

  49. Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three–dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846

    Google Scholar 

  50. Song HT, Choi JS, Huh YM et al (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 127:9992–9993

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB933903), the National Key Technology Research and Development Program (2012BAI23B08), the National Natural Science Foundation of China (51173117), and the Scientific Research Start-up Fund of Kunming University of Science and Technology (KKSY201305089).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ai.

Additional information

Bingbing Lin and Hongying Su contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Su, H., Jin, R. et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes. Sci. Bull. 60, 1272–1280 (2015). https://doi.org/10.1007/s11434-015-0840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0840-x

Keywords

Navigation