Advertisement

Science Bulletin

, Volume 60, Issue 13, pp 1184–1192 | Cite as

Phylogeography of Haplocarpha rueppelii (Asteraceae) suggests a potential geographic barrier for plant dispersal and gene flow in East Africa

  • Ling-Yun Chen
  • John K. Muchuku
  • Xue Yan
  • Guang-Wan Hu
  • Qing-Feng Wang
Article Life & Medical Sciences

Abstract

East Africa is a biodiversity hotspot. Haplocarpha rueppelii (Sch.Bip.) Beauverd is mainly distributed in the alpine grassland of East Africa. Here we sampled 65 individuals of eight populations/locations of H. rueppelii including hairy and glabrous forms from Mts. Elgon, Aberdare, Kenya, Kilimanjaro and Bale Mountains. We then sequenced one nuclear and three chloroplast DNA fragments and conducted phylogeographic analyses to test the taxonomic rank of the two forms and causes for the differentiation (intrinsic reproductive isolation and geographic barrier). The results demonstrate that the species consists of two major groups, one includes the populations from Mts. Elgon, Aberdare and Bale, while the other includes Mts. Kenya and Kilimanjaro. The species has established in Mts. Kenya and Aberdare during the Pleistocene. However, migration rate for individuals between the two mountains was low as showed by gene flow analysis. A barrier for plant dispersal and gene flow would have existed between Mts. Aberdare and Kenya since at least Pleistocene. No change of the taxonomic concept of this species is needed. This study reveals a potential geographic barrier in East Africa. We hope it will arouse more scientists’ interests in phylogeography and biodiversity of East Africa.

Keywords

East Africa Afro-alpine Gene flow Phylogeography Taxonomy Haplocarpha rueppelii 

Notes

Acknowledgments

We thank Zhi-Duan Chen and Alexander Rockinger for revising this manuscript; Nigel P. Barker for suggestions on this study; Susanne S. Renner for providing herbarium materials and constructive suggestions; Shu-Ying Zhao for laboratory work; Ya-Ping Guo for assistance in data analyses; and Ya-Dong Zhou and Elizabeth M Kamande for assistance in field work. This work was supported by Sino-Africa Joint Research Center (Y323771W07, SAJC201322) and the National Natural Science Foundation of China (31300182).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11434_2015_832_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1397 kb)

References

  1. 1.
    Halliday P, Wilmot-Dear CM (2000) Haplocarpha. In: Beentjie HJ (ed). Flora of tropical east Africa, Compositae (Part 1): Published on behalf of the East African governments by A.A.Balkema/Rotterdam/Brookfield. pp 286–290Google Scholar
  2. 2.
    Agnew ADQ, Agnew S (1994) Upland Kenya wild flowers—a flora of the ferns and herbaceous flowering plants of upland Kenya. East Africa Natural History Society, NairobiGoogle Scholar
  3. 3.
    De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefGoogle Scholar
  4. 4.
    Matute DR, Coyne JA (2010) Intrinsic reproductive isolation between two sister species of Drosophila. Evolution 64:903–920CrossRefGoogle Scholar
  5. 5.
    Assefa A, Ehrich D, Taberlet P et al (2007) Pleistocene colonization of afro-alpine “sky islands” by the arctic-alpine Arabis alpina. Heredity 99:133–142CrossRefGoogle Scholar
  6. 6.
    Ehrich D, Gaudeul M, Assefa A et al (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559CrossRefGoogle Scholar
  7. 7.
    Gizaw A, Kebede M, Nemomissa S et al (2013) Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine “sky islands” inferred from AFLPs and plastid DNA sequences. Flora 208:453–463CrossRefGoogle Scholar
  8. 8.
    Hedberg O (1970) Evolution of the afroalpine flora. Biotropica 2:16–23CrossRefGoogle Scholar
  9. 9.
    Hasternrath S (1983) The glaciers of equatorial East Afria. D. Reidel Publishing Company, HollandGoogle Scholar
  10. 10.
    Kebede M, Ehrich D, Taberlet P et al (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243CrossRefGoogle Scholar
  11. 11.
    Ebinger C (2005) Continental break-up: the East African perspective. Astron Geophys 46:2.16–12.21CrossRefGoogle Scholar
  12. 12.
    Kadu CAC, Konrad H, Schueler S et al (2013) Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands. Ann Bot 111:47–60CrossRefGoogle Scholar
  13. 13.
    Chang J, Chen D, Liang W et al (2013) Molecular demographic history of the hainan peacock pheasant (Polyplectron katsumatae) and its conservation implications. Chin Sci Bull 58:2185–2190CrossRefGoogle Scholar
  14. 14.
    Masao CA, Gizaw A, Piñeiro R et al (2013) Phylogeographic history and taxonomy of some afro-alpine grasses assessed based on AFLPs and morphometry: Deschampsia cespitosa, D. angusta and Koeleria capensis. Alp Bot 123:107–122CrossRefGoogle Scholar
  15. 15.
    Chen LY, Chen JM, Rorbert GW et al (2012) Generic phylogeny and historical biogeography of Alismataceae, inferred from multiple DNA sequences. Mol Phylogenet Evol 63:407–416CrossRefGoogle Scholar
  16. 16.
    McKenzie RJ, Barker NP (2008) Radiation of southern African daisies: biogeographic inferences for subtribe Arctotidinae (Asteraceae, Arctotideae). Mol Phylogenet Evol 49:1–16CrossRefGoogle Scholar
  17. 17.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  18. 18.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. 19.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  20. 20.
    Nuñez JJ, Wood NK, Rabanal FE et al (2011) Amphibian phylogeography in the Antipodes: Refugia and postglacial colonization explain mitochondrial haplotype distribution in the patagonian frog Eupsophus calcaratus (Cycloramphidae). Mol Phylogenet Evol 58:343–352CrossRefGoogle Scholar
  21. 21.
    Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  22. 22.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  23. 23.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  24. 24.
    Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with beauti and the beast 1.7. Mol Biol Evol 29:1969–1973CrossRefGoogle Scholar
  25. 25.
    Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Syst Biol 55:195–207CrossRefGoogle Scholar
  26. 26.
    Xie W, Lewis PO, Fan Y et al (2010) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160Google Scholar
  27. 27.
    Kass RE, Raftery AE (1995) Bayes factors. J Am Statist Assoc 90:773–795CrossRefGoogle Scholar
  28. 28.
    Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:e36CrossRefGoogle Scholar
  29. 29.
    Funk VA, Sancho G, Roque N et al (2014) A phylogeny of the gochnatieae: understanding a critically placed tribe in the compositae. Taxon 63:859–882Google Scholar
  30. 30.
    Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other Methods). Version 4. Sinauer Associates: Sunderland, Massachusetts. http://people.sc.fsu.edu/~dswofford/paup_test/. Accessed March 2015
  31. 31.
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  32. 32.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  33. 33.
    Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar
  34. 34.
    Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920CrossRefGoogle Scholar
  35. 35.
    Hey J (2010) The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol 27:921–933CrossRefGoogle Scholar
  36. 36.
    Hedberg O (1957) Afroalpine Vascular Plants: A Taxonomic Revision. A. –B. Lundequistska Bokhandeln, UppsalaGoogle Scholar
  37. 37.
    Seehausen O, Butlin RK, Keller I et al (2014) Genomics and the origin of species. Nat Rev Genet 15:176–192CrossRefGoogle Scholar
  38. 38.
    Knox EB, Palmer JD (1998) Chloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa. Syst Bot 23:109–149CrossRefGoogle Scholar
  39. 39.
    Alerstam T (1990) Bird Migration. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ling-Yun Chen
    • 1
    • 2
  • John K. Muchuku
    • 1
    • 2
    • 3
  • Xue Yan
    • 1
    • 2
  • Guang-Wan Hu
    • 1
    • 2
  • Qing-Feng Wang
    • 1
    • 2
  1. 1.Sino-Africa Joint Research CenterChinese Academy of SciencesWuhanChina
  2. 2.Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations