Skip to main content
Log in

Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining large-scale and temporally continuous information of lake-level changes. The CryoSat-2 altimetry is expected to solve the current problem that earlier radar altimeters are only practical for monitoring large water bodies, while ICESat laser altimetry is available only for the period 2003–2009. In this study, the comparison of CryoSat-2 altimetry for Namco with in situ water-level data suggests a high correlation coefficient of 0.71 (P < 0.01), with the mean error of −0.12 m and root-mean-square error of 0.18 m. Further, the combination of ICESat and CryoSat-2 altimetry data and in situ lake-level observations reveals a rapid water-level rise of 0.24 ± 0.04 m/year during 2003–2008 and then a slightly decreasing trend of −0.09 ± 0.04 m/year during 2009–2013. This study suggests that the CryoSat-2 altimetry has the potential of sustaining the fine observations on Tibetan lakes, following the ICESat mission. Besides, the examination of four key climatic variables (temperature, precipitation, potential evapotranspiration, and relative humidity) during 1990–2013 indicates that the wetting climate over Namco Basin stagnated or even reversed around 2006, which may be tightly related to the slowing lake growth.

摘要

青藏高原的内陆湖是区域气候变化的重要指示器。近年来,卫星测高技术成为高原湖泊动态的有力观测手段。目前,冰卫星(ICESat)测高数据(2003 ~ 2009年)已成功运用于高原内部湖泊水位变化监测,而高原湖泊水位的持续监测则依赖于高精度的新型卫星如CryoSat-2卫星(2010年发射)。本文选择纳木错作为研究对象,基于实测水位数据,评价CryoSat-2卫星(适中的地面脚点)测高数据的精度。研究表明该卫星获取的湖泊水位与实测结果的相关系数达到0.71 (P < 0.01),平均误差和均方根误差分别为−0.12 m和0.18 m。综合ICESat和CryoSat-2两颗卫星测高数据和实测水位,进一步分析了纳木错水位在2003 ~ 2013年内的变化规律。结果显示,纳木错水位在2003 ~ 2008年处于快速上涨阶段,增速为每年0.24 ± 0.04 m;在2009 ~ 2013时段,水位表现为微弱下降,年变化−0.09 ± 0.04 m。基于气象站点的气候观测数据,纳木错湿季水位增量表现出与降雨量显著正相关,后期的湖泊水位增速减缓甚至下降可能与当地气候干湿变化密切相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Immerzeel WW, van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  2. Qiu J (2008) China: the third pole. Nat News 454:393–396

    Article  Google Scholar 

  3. Song CQ, Huang B, Ke LH et al (2014) Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: a review. ISPRS J Photogramm 92:26–37

    Article  Google Scholar 

  4. Yao TD, Pu JC, Lu AX et al (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res 39:642–650

    Article  Google Scholar 

  5. Lei YB, Yang K, Wang B et al (2014) Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim Change 125:281–290

    Article  Google Scholar 

  6. Liao JJ, Shen GZ, Li YK (2013) Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int J Digit Earth 6:534–549

    Article  Google Scholar 

  7. Phan VH, Lindenbergh R, Menenti M (2012) ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int J Appl Earth Obs 17:12–22

    Article  Google Scholar 

  8. Song CQ, Huang B, Ke LH (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35

    Article  Google Scholar 

  9. Wan W, Xiao PF, Feng XZ et al (2014) Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin Sci Bull 59:1021–1035

    Article  Google Scholar 

  10. Birkett C (1995) The contribution of topex/poseidon to the global monitoring of climatically sensitive lakes. J Geophys Res Oceans (1978–2012) 100:25179–25204

    Article  Google Scholar 

  11. Calmant S, Seyler F, Cretaux JF (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29:247–269

    Article  Google Scholar 

  12. Crétaux J-F, Birkett C (2006) Lake studies from satellite radar altimetry. CR Geosci 338:1098–1112

    Article  Google Scholar 

  13. Song CQ, Huang B, Richards K et al (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50:3170–3186

    Article  Google Scholar 

  14. Wang XW, Gong P, Zhao YY et al (2013) Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens Environ 132:131–144

    Article  Google Scholar 

  15. Gao L, Liao JJ, Shen GZ (2013) Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002–2012). J Appl Remote Sens 7:073470

    Article  Google Scholar 

  16. Kropáček J, Braun A, Kang S et al (2012) Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. Int J Appl Earth Obs 17:3–11

    Article  Google Scholar 

  17. Song CQ, Huang B, Ke LH (2014) Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: detection and analysis by integrating satellite altimetry and optical imagery. Hydrol Process 28:2411–2418

    Article  Google Scholar 

  18. Wang XW, Cheng X, Gong P et al (2011) Earth science applications of ICESat/GLAS: a review. Int J Remote Sens 32:8837–8864

    Article  Google Scholar 

  19. Kleinherenbrink M, Ditmar P, Lindenbergh R (2014) Retracking CryoSat data in the sarin mode and robust lake level extraction. Remote Sens Environ 152:38–50

    Article  Google Scholar 

  20. Duan Z, Bastiaanssen WGM, Muala E (2013) ICESat-derived water level variations of roseires reservoir (Sudan) in the Nile basin. In: Proceedings of the geoscience and remote sensing symposium (IGARSS). 2013 IEEE International, Melbourne, VIC, Australia, 21–26 July 2013

  21. Duan Z, Bastiaanssen WGM (2013) Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens Environ 134:403–416

    Article  Google Scholar 

  22. Zhang GQ, Xie HJ, Kang SC et al (2011) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens Environ 115:1733–1742

    Article  Google Scholar 

  23. Zhang B, Wu YH, Zhu LP et al (2011) Estimation and trend detection of water storage at Nam Co lake, central Tibetan Plateau. J Hydrol 405:161–170

    Article  Google Scholar 

  24. Wingham DJ, Francis CR, Baker S et al (2006) CryoSat: a mission to determine the fluctuations in earth’s land and marine ice fields. Adv Space Res 37:841–871

    Article  Google Scholar 

  25. Labroue S, Boy F, Picot N et al (2012) First quality assessment of the CryoSat-2 altimetric system over ocean. Adv Space Res 50:1030–1045

    Article  Google Scholar 

  26. LEGOS Hfs (2010). http://www.Legos.Obsmip.Fr/fr/soa/hydrologie/hydroweb/. http://www.legos.obsmip.fr/fr/soa/hydrologie/hydroweb/

  27. Siegfried MR, Fricker HA, Roberts M et al (2014) A decade of west antarctic subglacial lake interactions from combined ICESat and CryoStat-2 altimetry. Geophys Res Lett 41:891–898

    Article  Google Scholar 

  28. Urban TJ, Schutz BE, Neuenschwander AL (2008) A survey of ICESat coastal altimetry applications: continental coast, open ocean island, and inland river. Terr Atmos Ocean Sci 19:1–19

    Article  Google Scholar 

  29. Schutz B, Zwally H, Shuman C et al (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01

    Article  Google Scholar 

  30. Zwally HJ, Schutz B, Abdalati W et al (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34:405–445

    Article  Google Scholar 

  31. Zwally H, Schutz R, Bentley C et al (2003) GLAS/ICESat l2 global land surface altimetry data. V33, NSIDC DAAC: NASA DAAC at the National Snow and Ice Data Center. doi:10.5067/ICESAT/GLAS/DATA207

  32. Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FAO Rome 300:6541

    Google Scholar 

  33. Monteith J (1965) Evaporation and environment. Symp Soc Exp Biol 19(205–23):4

    Google Scholar 

  34. Song CQ, Huang B, Ke LH et al (2014) Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J Hydrol 514:131–144

    Article  Google Scholar 

  35. Pavlis NK, Holmes SA, Kenyon SC et al (2008) An earth gravitational model to degree 2160: Egm2008. EGU Gen Assem 10:13–18

  36. Lemoine FG, Kenyon SC, Factor JK et al (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. http://ntrs.nasa.gov/search.jsp?R=19980218814

  37. Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection. Wiley, Hoboken

    Google Scholar 

  38. Gao MX, Zeilinger G, Xu XW et al (2013) DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology 190:61–72

    Article  Google Scholar 

  39. Zhang TY, Jin SG (2013) Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models. J Geodyn 72:59–66

    Article  Google Scholar 

  40. Lei YB, Yao TD, Bird BW et al (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67

    Article  Google Scholar 

  41. Li BQ, Yu ZB, Liang Z et al (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global Planet Change 118:69–84

    Article  Google Scholar 

  42. Ye QH, Yao TD, Chen F et al (2008) Response of glacier and lake covariations to climate change in Mapam Yumco basin on Tibetan Plateau during 1974–2003. J China Univ Geosci 19:135–145

    Article  Google Scholar 

  43. Ye QH, Yao TD, Naruse R (2008) Glacier and lake variations in the Mapam Yumco basin, western Himalaya of the Tibetan Plateau, from 1974 to 2003 using remote-sensing and GIS technologies. J Glaciol 54:933–935

    Article  Google Scholar 

  44. Zhang GQ, Yao TD, Xie HJ et al (2014) Lakes’ state and abundance across the Tibetan Plateau. Chin Sci Bull 59:3010–3021

    Article  Google Scholar 

  45. Zhou SQ, Kang SC, Chen F et al (2013) Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J Hydrol 491:89–99

    Article  Google Scholar 

  46. Gardner AS, Moholdt G, Cogley JG et al (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857

    Article  Google Scholar 

  47. Ke LH, Ding X, Song CQ (2015) Estimation of mass balance of dongkemadi glaciers with multiple methods based on multi-mission satellite data. Quat Int. doi:10.1016/j.quaint.2015.02.043

    Google Scholar 

  48. Neckel N, Kropáček J, Bolch T et al (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9:014009

    Article  Google Scholar 

  49. Song CQ, Ke LH, Huang B et al (2015) Can mountain glacier melting explains the grace-observed mass loss in the southeast Tibetan Plateau: from a climate perspective? Glob Planet Change 124:1–9

    Article  Google Scholar 

  50. Yao TD, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667

    Article  Google Scholar 

  51. Bolch T, Yao T, Kang S et al (2010) A glacier inventory for the western nyainqentanglha range and the nam co basin, tibet, and glacier changes 1976–2009. Cryosphere 4:419–433

    Article  Google Scholar 

  52. Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4:68–73

    Article  Google Scholar 

  53. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Appl Stat 18:50–60

    Google Scholar 

  54. Zhang Q, Singh VP, Li JF (2013) Eco-hydrological requirements in arid and semi-arid regions: the yellow river in China as a case study. J Hydraul Eng 18:689–697

    Article  Google Scholar 

  55. Yang K, Wu H, Qin J et al (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91

    Article  Google Scholar 

  56. Wu QB, Zhang TJ (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res 113(D13108):1–22

    Google Scholar 

  57. Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Change 72:32–38

    Article  Google Scholar 

  58. Duan Z, Bastiaanssen WGM (2015) A new empirical procedure for estimating intra-annual heat storage changes in lakes and reservoirs: review and analysis of 22 lakes. Remote Sens Environ 156:143–156

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Special Basic Research Project of the Ministry of Science and Technology (2013FY111400-2, 2009CB723901), the National Natural Science Foundation of China (41120114001, 41125003, 41071254, 40971048), the European Space Agency (ESA AO 2605), the Knowledge Innovation Foundation Program for outstanding Young Scholar of Chinese Academy of Sciences (CAS) (KZCX2-EW-QN104). The project was also supported by Open Research Fund of Key Laboratory of Tibetan Environmental Changes and Land Surface Processes in Chinese Academy of Sciences, and Open Fund of State Key Laboratory of Remote Sensing Science. Their support is gratefully acknowledged. We are also grateful to the National Snow and Ice Data Center, the European Space Agency–Earth Observation Missions, and the China Meteorological Data Sharing Service System, for providing satellite altimetry data and meteorological station climate data for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Ye.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Ye, Q. & Cheng, X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Sci. Bull. 60, 1287–1297 (2015). https://doi.org/10.1007/s11434-015-0826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0826-8

Keywords

Navigation