Skip to main content

Catalytic alkane dehydrogenations

烷烃催化脱氢

Abstract

Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes, particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.

摘要

烯烃是一种重要的有机合成原料,在聚合物制备和精细化工领域具有非常广阔的应用前景。随着近年来烯烃需求的不断增长,烷烃脱氢制烯烃技术受到研究人员的广泛关注,多种不同类型的非均相催化剂已成功应用于低碳烷烃如乙烷、丙烷以及丁烷的催化脱氢工艺。在最近三十年中,过渡金属络合物,特别是pincer结构的铱络合物,已发展成为一类优良的均相烷烃脱氢催化剂。相对于非均相催化体系,该均相体系的反应条件更加温和,并且对直链烷烃( > C4)显示出更高的脱氢活性和区域选择性。

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

References

  1. 1.

    Ertl G, Knozinger H, Schuth F et al (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 3206–3229

    Book  Google Scholar 

  2. 2.

    Chuck CP, Matthew TB, Lewandowski S et al (2011) Chemical Economics Handbook. SRI Consulting, Menlo Park

  3. 3.

    Zhang WD, Au CT, Wan HL (1998) Active site of praseodymium orthovanadate catalyst in oxidative dehydrogenation of propane. Chin Sci Bull 43:217–220

    Article  Google Scholar 

  4. 4.

    Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131

    Article  Google Scholar 

  5. 5.

    Gartner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217

    Article  Google Scholar 

  6. 6.

    Frey FE, Huppke WE (1933) Equilibrum dehydrogenation of ethane, propane, and the butanes. Ind Eng Chem 25:54–59

    Article  Google Scholar 

  7. 7.

    Frey FE, Huppke WE (1937) Processes for converting hydrocarbons. US Patent 2098959

  8. 8.

    Weckhuysen BM, Schoonheydt RA (1999) Alkane dehydrogenation over supported chromium oxide catalysts. Catal Today 51:223–232

    Article  Google Scholar 

  9. 9.

    De Rossi S, Ferraris G, Fremiotti S et al (1992) Propane dehydrogenation on chromia zirconia catalysts. Appl Catal A Gen 81:113–132

    Article  Google Scholar 

  10. 10.

    De Rossi S, Casaletto MP, Ferraris G et al (1998) Chromia/zirconia catalysts with Cr content exceeding the monolayer. A comparison with chromia/alumina and chromia/silica for isobutene dehydrogenation. Appl Catal A Gen 167:257–270

    Article  Google Scholar 

  11. 11.

    Ercan C, Gartside RJ (1996) Reactor performance and stability in an alternating reaction-reheat paraffin dehydrogenation system. Can J Chem Eng 74:626–637

    Article  Google Scholar 

  12. 12.

    Bhasin MM, McCain JH, Vora BV et al (2001) Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl Catal A Gen 221:397–419

    Article  Google Scholar 

  13. 13.

    Haensel V (1952) Conversion of hydrocarbons with platinum composite catalyst. US Patent 2602772

  14. 14.

    Voskoboynikov TV, Wei DH, Adraan JW et al (2004) Dehydrogenation catalyst composition. US Patent 6756340

  15. 15.

    Olbrich ME (1992) Group VIII catalyst supported on mixture of zinc aluminate and calcium aluminate. US Patent 5143888

  16. 16.

    Schindler GP, Machhammer O, Herth K et al (2000) German Patent 10047642

  17. 17.

    Resasco DE, Marcus BK, Huang CS et al (1994) Isobutane dehydrogenation over sulfided nickle catalysts. J Catal 146:40–55

    Article  Google Scholar 

  18. 18.

    Wang GW, Meng Z, Liu JW et al (2013) Promoting effect of sulfur addition on the catalytic performance of Ni/MgAl2O4 catalysts for isobutane dehydrogenation. ACS Catal 3:2992–3001

    Article  Google Scholar 

  19. 19.

    Wang GW, Li CY, Shan HH (2014) Highly efficient metal sulfide catalysts for selective dehydrogenation of isobutane to isobutene. ACS Catal 4:1139–1143

    Article  Google Scholar 

  20. 20.

    Yun JH, Lobo RF (2014) Catalytic dehydrogenation of propane over iron-silicate zeolites. J Catal 312:263–270

    Article  Google Scholar 

  21. 21.

    Xu YL, Sang HX, Wang K et al (2014) Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon. Appl Surf Sci 316:163–170

    Article  Google Scholar 

  22. 22.

    Sun YN, Gao CC, Tao L et al (2014) Zn–Nb–O catalysts for propylene production via catalytic dehydrogenation of propane. Catal Commun 50:73–77

    Article  Google Scholar 

  23. 23.

    Liu L, Deng QF, Agula B et al (2012) Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catal Today 186:35–41

    Article  Google Scholar 

  24. 24.

    Baudry D, Ephritikhine M, Felkin H et al (1984) Activation of C–H bonds in saturated hydrocarbons. The formation of bis(triphenylphosphine) (η-alkadiene)rhenium trihydrides from n-alkanes, and their selective conversion into the corresponding 1-alkenes. Tetrahedron Lett 25:1283–1286

    Article  Google Scholar 

  25. 25.

    Felkin H, Fillebeen-Khan T, Gault Y et al (1984) Activation of C–H bonds in saturated hydrocarbons. The catalytic functionalisation of cycloöctane by means of some soluble iridium and ruthenium polyhydride systems. Tetrahedron Lett 25:1279–1282

    Article  Google Scholar 

  26. 26.

    Felkin H, Fillebeen-Khan T, Holmes-Smith R et al (1985) Activation of C–H bonds in saturated hydrocarbons. The selective, catalytic functionalisation of methyl groups by means of a soluble iridium polyhydride system. Tetrahedron Lett 26:1999–2000

    Article  Google Scholar 

  27. 27.

    Burk MJ, Crabtree RH, Parnell CP et al (1984) Selective stoichiometric and catalytic carbon-hydrogen bond cleavage reactions in hydrocarbons by iridium complexes. Organometallics 3:816–817

    Article  Google Scholar 

  28. 28.

    Burk MJ, Crabtree RH, McGrath DV (1985) Thermal and photochemical catalytic dehydrogenation of alkanes with [IrH2(CF3CO2)(PR3)2] (R = p-F-C6H4 and cyclohexyl). J Chem Soc Chem Commun (24):1829–1830

  29. 29.

    Burk MJ, Crabtree RH (1987) Selective catalytic dehydrogenation of alkanes to alkenes. J Am Chem Soc 109:8025–8032

    Article  Google Scholar 

  30. 30.

    Crestani MG, Hickey AK, Gao XF et al (2013) Room temperature dehydrogenation of ethane, propane, linear alkanes C4–C8, and some cyclic alkanes by titanium–carbon multiple bonds. J Am Chem Soc 135:14754–14767

    Article  Google Scholar 

  31. 31.

    Baudry D, Ephritikhine M, Felkin H (1980) The activation of C–H bonds in cyclopentane by bis(phosphine)rhenium heptahydrides. J Chem Soc Chem Commun (24):1243–1244

  32. 32.

    Baudry D, Ephritikhine M, Felkin H (1982) The activation of C–H bonds in cycloalkanes by rhenium complexes. J Chem Soc Chem Commun (11):606–607

  33. 33.

    Baudry D, Ephritikhine M, Felkin H et al (1983) The selective catalytic conversion of cycloalkanes into cycloalkenes using a soluble rhenium polyhydride system. J Chem Soc Chem Commun (14):788–789

  34. 34.

    Six C, Gabor B, Gorls H et al (1999) Inter- and intramolecular thermal activation of sp3 C–H bonds with ruthenium bisallyl complexes. Organometallics 18:3316–3326

    Article  Google Scholar 

  35. 35.

    Gruver BC, Adams JJ, Warner SJ et al (2011) Acceptor pincer chemistry of ruthenium: catalytic alkane dehydrogenation by (CF3PCP)Ru(cod)(H). Organometallics 30:5133–5140

    Article  Google Scholar 

  36. 36.

    Gruver BC, Adams JJ, Arulsamy N et al (2013) Acceptor pincer chemistry of osmium: catalytic alkane dehydrogenation by (CF3PCP)Os(cod)(H). Organometallics 32:6468–6475

    Article  Google Scholar 

  37. 37.

    Nomura K, Saito Y (1988) n-Alkene and dihydrogen formation from n-alkanes by photocatalysis using carbonyl(chloro)phosphine-rhodium complexes. J Chem Soc Chem Commun (3):161–162

  38. 38.

    Maguire JA, Boese WT, Goldman AS (1989) Photochemical dehydrogenation of alkanes catalyzed by trans-carbonyl chlorobis(trimethylphosphine)rhodium: aspects of selectivity and mechanism. J Am Chem Soc 111:7088–7093

    Article  Google Scholar 

  39. 39.

    Maguire JA, Bcese WT, Goldman ME et al (1990) Mechanism of the photochemical dehydrogenation and transfer dehydrogenation of alkanes catalyzed by trans-Rh(PMe3)2(CO)Cl. Coord Chem Rev 97:179–192

    Article  Google Scholar 

  40. 40.

    Maguire JA, Goldman AS (1991) Efficient low-temperature thermal functionalization of alkanes. Transfer-dehydrogenation catalyzed by Rh(PMe3)2CI(CO) in solution under a high pressure dihydrogen atmosphere. J Am Chem Soc 113:6706–6708

  41. 41.

    Maguire JA, Petrillo A, Goldman AS (1992) Efficient transfer-dehydrogenation of alkanes catalyzed by rhodium trimethylphosphine complexes under dihydrogen atmosphere. J Am Chem Soc 114:9492–9498

  42. 42.

    Wang K, Goldman ME, Emge TJ et al (1996) Transfer-dehydrogenation of alkanes catalyzed by rhodium (I) phosphine complexes. J Organomet Chem 518:55–68

  43. 43.

    Chowdhury AD, Weding N, Julis J et al (2014) Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew Chem Int Ed 53:6477–6481

    Article  Google Scholar 

  44. 44.

    Crabtree RH, Mihelcic JM, Quirk JM (1979) Iridium complexes in alkane dehydrogenation. J Am Chem Soc 101:7738–7740

    Article  Google Scholar 

  45. 45.

    Gupta M, Hagen C, Flesher RJ et al (1996) A highly active alkane dehydrogenation catalyst: stabilization of dihydrido rhodium and iridium complexes by a P–C–P pincer ligand. Chem Commun (23):2083–2084

  46. 46.

    Moulton CJ, Shaw BL (1976) Transition metal-carbons. Part XLII. Complexes of nickle, palladium, platinum, rhodium and iridium with tridentate ligand 2,6-bis[(di-t-butylphospino)methyl]phenyl. J Chem Soc Dalton Trans (11):1020–1024

  47. 47.

    Crocker C, Errington RJ, Markham R et al (1980) Further studies on the interconversion of large ring and cyclometallated complexes of rhodium, with the diphosphines tBu2P(CH2)5PtBu2 and tBu2PCH2CH = CHCH2PtBu2. J Chem Soc Dalton Trans (2):387–395

  48. 48.

    Crocker C, Errington RJ, Markham R et al (1980) Large-ring and cyclometalated rhodium complexes from some medium-chain. α, ω-diphosphines. J Am Chem Soc 102:4373–4379

    Article  Google Scholar 

  49. 49.

    Crocker C, Empsall HD, Errington RJ et al (1982) Transition metal-carbon bonds. Part 52. Large ring and cyclometallated complexes formed from tBu2PCH2CH2CHRCH2CH2PtBu2 (R = H or Me) and IrCl3, or [Ir2Cl4(cyclo-octene)4]: crystal structures of the cyclometallated hydride, [IrHCl(tBu2PCH2CH2CHCH2CH2PtBu2)], and the carbene complex [IrCl(tBu2PCH2CH2CCH2CH2PtBu2)]. J Chem Soc Dalton Trans (7):1217–1224

  50. 50.

    Empsall HD, Hyde EM, Markham R et al (1977) Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. J Chem Soc Chem Commun (17):589–590

  51. 51.

    Briggs JR, Constable AG, McDonald WS et al (1982) Transition metal-carbon bonds. Part 53. The further chemistry of cyclometallated complexes formed from tBu2P(CH2)5PtBu2 and PtCl2: crystal structure of [PtCl{tBu2PCH2CH2C = CHCH2PtBu2}]. J Chem Soc Dalton Trans (7):1225–1230

  52. 52.

    Errington RJ, McDonald WS, Shaw BL (1982) Transition metal-carbon bonds. Part 54. Complexes of palladium, platinum, rhodium, and iridium with tBu2PCH2CHMe(CH2)3PtBu2. Crystal structures of [PdCl(tBu2PCH2CHMeCHCH2CH2PtBu2)] and [IrH(Cl)(tBu2PCH2CHMeCHCH2CH2PtBu2)]. J Chem Soc Dalton Trans (9):1829–1835

  53. 53.

    McLoughlin MA, Flesher RJ, Kaska WC et al (1994) Synthesis and reactivity of [IrH2(tBu2)PCH2CH2CHCH2CH2P(tBu2)], a dynamic iridium polyhydride complex. Organometallics 13:3816–3822

    Article  Google Scholar 

  54. 54.

    Xu WW, Rosini GP, Krogh-Jespersen K et al (1997) Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem Commun (23):2273–2274

  55. 55.

    Gupta M, Hagen C, Kaska WC et al (1997) Catalytic dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P-C-P pincer complex. J Am Chem Soc 119:840–841

    Article  Google Scholar 

  56. 56.

    Gupta M, Kaska WC, Jensen CM (1997) Catalytic dehydrogenation of ethylbenzene and tetrahydrofuran by a dihydrido iridium P–C–P pincer complex. Chem Commun (5):461–462

  57. 57.

    Liu FC, Goldman AS (1999) Efficient thermochemical alkane dehydrogenation and isomerization catalyzed by an iridium pincer complex. Chem Commun (77):655–656

  58. 58.

    Aoki T, Crabtree RH (1993) Homogeneous tungsten, rhenium, and iridium catalysts in alkane dehydrogenation driven by reflux of substrate or of cosolvent or by inert-gas flow. Organometallics 12:294–298

    Article  Google Scholar 

  59. 59.

    Fujii T, Higashino Y, Saito Y (1993) Thermocatalytic dehydrogenation of alkanes with Wilkinson complexes. J Chem Soc Dalton Trans (4):517–520

  60. 60.

    Liu FC, Pak EB, Singh B et al (1999) Dehydrogenation of n-alkanes catalyzed by iridium “pincer” complexes: regioselective formation of α-olefins. J Am Chem Soc 121:4086–4087

    Article  Google Scholar 

  61. 61.

    Morales DM, Lee DW, Wang ZH et al (2001) Oxidative addition of water by an iridium PCP pincer complex: catalytic dehydrogenation of alkanes by IrH(OH){C6H3-2,6-(CH2PtBu2)2}. Organometallics 20:1144–1147

    Article  Google Scholar 

  62. 62.

    Zhu KM, Achord PD, Zhang XW et al (2004) Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties. J Am Chem Soc 126:13044–13053

    Article  Google Scholar 

  63. 63.

    Kundu S, Choliy Y, Zhuo G et al (2009) Rational design and synthesis of highly active pincer-iridium catalysts for alkane dehydrogenation. Organometallics 28:5432–5444

    Article  Google Scholar 

  64. 64.

    Punji B, Emge TJ, Goldman AS (2010) A highly stable adamantyl-substituted pincer-ligated iridium catalyst for alkane dehydrogenation. Organometallics 29:2702–2709

    Article  Google Scholar 

  65. 65.

    Adams JJ, Arulsamy N, Roddick DM (2012) Investigation of iridium CF3PCP pincer catalytic dehydrogenation and decarbonylation chemistry. Organometallics 31:1439–1447

  66. 66.

    Haenel MW, Oevers S, Angermund K et al (2001) Thermally stable homogeneous catalysts for alkane dehydrogenation. Angew Chem Int Ed 40:3596–3600

    Article  Google Scholar 

  67. 67.

    Kuklin SA, Sheloumov AM, Dolgushin FM et al (2006) Highly active iridium catalysts for alkane dehydrogenation. Synthesis and properties of iridium bis(phosphine) pincer complexes based on ferrocene and ruthenocene. Organometallics 25:5466–5476

    Article  Google Scholar 

  68. 68.

    Shi Y, Suguri T, Dohi C et al (2013) Highly active catalysts for the transfer dehydrogenation of alkanes: synthesis and application of novel 7-6-7 ring-based pincer iridium complexes. Chem Eur J 19:10672–10689

    Article  Google Scholar 

  69. 69.

    Gottker-Schnetmann I, White P, Brookhart M (2004) Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes. J Am Chem Soc 126:1804–1811

    Article  Google Scholar 

  70. 70.

    Polukeev AV, Gritcenko R, Jonasson KJ et al (2014) Catalytic dehydrogenation of cyclooctane and triethylamine using aliphatic iridium pincer complexes. Polyhedron 84:63–66

  71. 71.

    Bezier D, Brookhart M (2014) Applications of PC(sp3)P iridium complexes in transfer dehydrogenation of alkanes. ACS Catal 4:3411–3420

  72. 72.

    Biswas S, Choliy Y, Krogh-Jespersen K et al (2009) Regioselectivity in the transfer-dehydrogenation of alkanes by two pincer-iridium-based catalysts. Abstracts of papers of the American Chemical Society, 238, INOR-479

  73. 73.

    Biswas S, Ahuja R, Ray A et al (2008) INOR 125-A tale of two ligands. Subtle differences in sterics exert major differences in the energetics of alkane dehydrogenation catalyzed by pincer complexes (tBuPCP)Ir vs. (tBuPOCOP)Ir. Abstracts of Papers of the American Chemical Society, 236, INOR-125

  74. 74.

    Morales DM, Redon R, Yung C et al (2004) Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP pincer complex. Inorg Chim Acta 357:2953–2956

    Article  Google Scholar 

  75. 75.

    Renkema KB, Kissin YV, Goldman AS (2003) Mechanism of alkane transfer-dehydrogenation catalyzed by a pincer-ligated iridium complex. J Am Chem Soc 125:7770–7771

    Article  Google Scholar 

  76. 76.

    Gottker-Schnetmann I, Brookhart M (2004) Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by iridium bis(phosphinite) p-XPCP pincer complexes. J Am Chem Soc 126:9330–9338

    Article  Google Scholar 

  77. 77.

    Choi J, MacArthur AR, Brookhart M et al (2011) Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rev 111:1761–1779

    Article  Google Scholar 

  78. 78.

    Yao WB, Zhang YX, Jia XQ et al (2014) Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex. Angew Chem Int Ed 53:1390–1394

    Article  Google Scholar 

  79. 79.

    Jia XQ, Zhang L, Qin C et al (2014) Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization. Chem Commun 50:11056–11059

    Article  Google Scholar 

  80. 80.

    Brayto DF, Beaumont PR, Fukushima EY et al (2014) Synthesis, characterization, and dehydrogenation activity of an iridium arsenic based pincer catalysts. Organometallics 33:5198–5202

    Article  Google Scholar 

  81. 81.

    Chianese AR, Drance MJ, Jensen KH et al (2014) Acceptorless alkane dehydrogenation catalyzed by iridium CCC-pincer complexes. Organometallics 33:457–464

    Article  Google Scholar 

  82. 82.

    Chianese AR, Mo A, Lampland NL et al (2010) Iridium complexes of CCC-pincer N-heterocyclic carbene ligands: synthesis and catalytic C–H functionalization. Organometallics 29:3019–3026

    Article  Google Scholar 

  83. 83.

    Chianese AR, Shaner SE, Tandler JA et al (2012) Iridium complexes of bulky CCC-pincer N-heterocyclic carbene ligands: steric control of coordination number and catalytic alkene isomerization. Organometallics 31:7359–7367

    Article  Google Scholar 

  84. 84.

    Zuo WW, Braunstein P (2011) N-heterocyclic dicarbene iridium(III) pincer complexes featuring mixed NHC/abnormal NHC ligands and their applications in the transfer dehydrogenation of cyclooctane. Organometallics 31:2606–2615

    Article  Google Scholar 

  85. 85.

    Allen KE, Heinekey DM, Goldman AS et al (2013) Alkane dehydrogenation by C–H activation at iridium(III). Organometallics 32:1579–1582

    Article  Google Scholar 

  86. 86.

    Ray A, Zhu KM, Kissin YV et al (2005) Dehydrogenation of aliphatic polyolefins catalyzed by pincer-ligated iridium complexes. Chem Commun (27):3388–3390

  87. 87.

    Goldman AS, Roy AH, Huang Z et al (2006) Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312:257–261

    Article  Google Scholar 

  88. 88.

    Ahuja R, Punji B, Findlater M et al (2010) Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes. Nat Chem 3:167–171

    Article  Google Scholar 

  89. 89.

    Wang ZH, Tonks I, Belli J et al (2009) Dehydrogenation of N-ethyl perhydrocarbazole catalyzed by PCP pincer iridium complexes: evaluation of a homogeneous hydrogen storage system. J Organomet Chem 694:2854–2857

    Article  Google Scholar 

  90. 90.

    Wang ZH, Belli J, Jensen CM (2011) Homogeneous dehydrogenation of liquid organic hydrogen carriers catalyzed by an iridium PCP complex. Faraday Discuss 151:297–305

    Article  Google Scholar 

  91. 91.

    Brayton DF, Jensen CM (2014) Solvent free selective dehydrogenation of indolic and carbazolic molecules with an iridium pincer catalyst. Chem Commun 50:5987–5989

    Article  Google Scholar 

  92. 92.

    Zhang XW, Fried A, Knapp S et al (2003) Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines. Chem Commun (16):2060–2061

  93. 93.

    Huang Z, Brookhart M, Goldman AS et al (2009) Highly active and recyclable heterogeneous iridium pincer catalysts for dehydrogenation of alkanes. Adv Catal Synth 351:188–206

    Article  Google Scholar 

  94. 94.

    Holtcamp MW, Henling LM, Day MW et al (1998) Intramolecular and intermolecular C–H activation at a cationic PtII center. Inorg Chim Acta 270:467–478

    Article  Google Scholar 

  95. 95.

    Fekl U, Kaminsky W, Goldberg KI (2003) β-diiminate platinum complexes for alkane dehydrogenation. J Am Chem Soc 125:15286–15287

    Article  Google Scholar 

  96. 96.

    Vedernikov AN, Huffman JC, Caulton KG (2003) [2.1.1]-(2,6)-pyridinophane (L)-controlled alkane C–H bond cleavage: (L)PtMe2H+ as a precursor to the geometrically “tense” transient (L)PtMe+. New J Chem 27:665–667

    Article  Google Scholar 

  97. 97.

    Vedernikov AN, Gaulton KG (2003) N–PtIV–H/N–H PtII intramolecular redox equilibrium in a product of H–C(sp2) cleavage and unusual alkane/arene C–H bond selectivity of ([2.1.1]pyridinophane)PtII(CH3)+. Chem Commun (3):358–359

  98. 98.

    Khaskin E, Zavalij PY, Vedernikov AN (2006) Facile arene C–H bond activation and alkane dehydrogenation with anionic LPtIIMe2 in hydrocarbon-water systems (L = dimethyldi(2-pyridyl)borate). J Am Chem Soc 128:13054–13055

  99. 99.

    Kostelansky CN, MacDonald MG, White PS et al (2006) Stoichiometric alkane dehydrogenation with Tp‘PtMe2H to form Tp‘Pt(η 2-olefin)(H) complexes. Organometallics 25:2993–2998

    Article  Google Scholar 

  100. 100.

    West NM, White PS, Templeton JL (2007) Facile dehydrogenation of ethers and alkanes with a β-diiminate Pt fragment. J Am Chem Soc 129:12372–12373

    Article  Google Scholar 

  101. 101.

    Khaskin E, Lew DL, Pal S et al (2009) Homogeneous catalytic transfer dehydrogenation of alkanes with a group 10 metal center. Chem Commun (41):6270–6272

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2015CB856600) and the National Natural Science Foundation of China (21422209, 21432011, 21421091).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Hu or Zheng Huang.

Additional information

Yuxuan Zhang and Wubing Yao contributed equally to this work.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yao, W., Fang, H. et al. Catalytic alkane dehydrogenations. Sci. Bull. 60, 1316–1331 (2015). https://doi.org/10.1007/s11434-015-0818-8

Download citation

Keywords

  • Olefins
  • Alkane dehydrogenation
  • Heterogeneous catalysts
  • Homogeneous catalysts
  • Pincer ligand
  • Iridium complexes

关键词

  • 烯烃
  • 烷烃脱氢
  • 非均相催化剂
  • 均相催化剂
  • pincer配体
  • 铱络合物