Advertisement

Science Bulletin

, Volume 60, Issue 1, pp 86–95 | Cite as

A Connectome Computation System for discovery science of brain

  • Ting Xu
  • Zhi Yang
  • Lili Jiang
  • Xiu-Xia Xing
  • Xi-Nian Zuo
Article Life & Medical Sciences

Abstract

Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline—namely the Connectome Computation System (CCS)—for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping and connectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI–Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6–85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/zuoxinian/CCS) and our laboratory’s Web site (http://lfcd.psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.

Keywords

Connectome Life span Big data Normative charts Discovery science 

Notes

Acknowledgments

This work was partially supported by the National Basic Research Program (973) of China (2015CB351702), the National Natural Science Foundation of China (81220108014, 81471740, 81201153, 81171409, and 81270023), the Key Research Program (KSZD-EW-TZ-002) and the Hundred Talents Program of the Chinese Academy of Sciences. Dr. Xiu-Xia Xing acknowledges the Beijing Higher Education Young Elite Teacher Project (No. YETP1593). Dr. Zhi Yang acknowledges the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03) and the Outstanding Young Researcher Award from Institute of Psychology, Chinese Academy of Sciences (Y4CX062008). We thank all members of the Laboratory for Functional Connectome and Development, Institute of Psychology at CAS and the attendees of the first CCS education course for their helpful feedback and suggestions for the improvement of the CCS.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42CrossRefGoogle Scholar
  2. 2.
    Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140CrossRefGoogle Scholar
  3. 3.
    Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349Google Scholar
  4. 4.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefGoogle Scholar
  5. 5.
    Breakspear M, Jirsa V, Deco G (2010) Computational models of the brain: from structure to function. Neuroimage 52:727–730CrossRefGoogle Scholar
  6. 6.
    Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43–56CrossRefGoogle Scholar
  7. 7.
    Deco G, Jirsa VK, McIntosh AR (2013) Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci 36:268–274CrossRefGoogle Scholar
  8. 8.
    Song HF, Kennedy H, Wang XJ (2014) Spatial embedding of structural similarity in the cerebral cortex. Proc Natl Acad Sci USA 111:16580–16585CrossRefGoogle Scholar
  9. 9.
    Chen Y, Wang S, Hilgetag CC et al (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9:e1002937CrossRefGoogle Scholar
  10. 10.
    Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739CrossRefGoogle Scholar
  11. 11.
    Seung HS (2011) Neuroscience: towards functional connectomics. Nature 471:170–172CrossRefGoogle Scholar
  12. 12.
    Alivisatos AP, Chun M, Church GM et al (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970–974CrossRefGoogle Scholar
  13. 13.
    Smith SM, Vidaurre D, Beckmann CF et al (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:666–682CrossRefGoogle Scholar
  14. 14.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  15. 15.
    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefGoogle Scholar
  16. 16.
    1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRefGoogle Scholar
  17. 17.
    1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65CrossRefGoogle Scholar
  18. 18.
    Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRefGoogle Scholar
  19. 19.
    Schadt EE, Linderman MD, Sorenson J et al (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657CrossRefGoogle Scholar
  20. 20.
    Berger B, Peng J, Singh M (2013) Computational solutions for omics data. Nat Rev Genet 14:333–346CrossRefGoogle Scholar
  21. 21.
    Turk-Browne NB (2013) Functional interactions as big data in the human brain. Science 342:580–584CrossRefGoogle Scholar
  22. 22.
    Marcus DS, Olsen TR, Ramaratnam M et al (2007) The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5:11–34Google Scholar
  23. 23.
    Scott A, Courtney W, Wood D et al (2011) COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinform 5:33CrossRefGoogle Scholar
  24. 24.
    Craddock RC, Jbabdi S, Yan CG et al (2013) Imaging human connectomes at the macroscale. Nat Methods 10:524–539CrossRefGoogle Scholar
  25. 25.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefGoogle Scholar
  26. 26.
    Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207CrossRefGoogle Scholar
  27. 27.
    Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075CrossRefGoogle Scholar
  28. 28.
    Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529CrossRefGoogle Scholar
  29. 29.
    Xing XX, Zhou YL, Adelstein JS et al (2011) PDE-based spatial smoothing: a practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration. Magn Reson Imaging 29:731–738CrossRefGoogle Scholar
  30. 30.
    Zuo XN, Xing XX (2011) Effects of non-local diffusion on structural MRI preprocessing and default network mapping: statistical comparisons with isotropic/anisotropic diffusion. PLoS One 6:e26703CrossRefGoogle Scholar
  31. 31.
    Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373CrossRefGoogle Scholar
  32. 32.
    Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802CrossRefGoogle Scholar
  33. 33.
    Behrens TE, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088CrossRefGoogle Scholar
  34. 34.
    Andersson JL, Skare S (2002) A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 16:177–199CrossRefGoogle Scholar
  35. 35.
    Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53:1088–1095CrossRefGoogle Scholar
  36. 36.
    Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31:394–400CrossRefGoogle Scholar
  37. 37.
    Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480CrossRefGoogle Scholar
  38. 38.
    Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48:63–72CrossRefGoogle Scholar
  39. 39.
    Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34:144–155CrossRefGoogle Scholar
  40. 40.
    Taylor PA, Saad ZS (2013) FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connect 3:523–535CrossRefGoogle Scholar
  41. 41.
    Saad ZS, Reynolds RC, Jo HJ et al (2013) Correcting brain-wide correlation differences in resting-state FMRI. Brain Connect 3:339–352CrossRefGoogle Scholar
  42. 42.
    Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341CrossRefGoogle Scholar
  43. 43.
    Carp J (2013) Optimizing the order of operations for movement scrubbing: comment on power. Neuroimage 76:436–438CrossRefGoogle Scholar
  44. 44.
    Yan CG, Cheung B, Kelly C et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201CrossRefGoogle Scholar
  45. 45.
    Satterthwaite TD, Elliott MA, Gerraty RT et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256CrossRefGoogle Scholar
  46. 46.
    Jo HJ, Saad ZS, Simmons WK et al (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52:571–582CrossRefGoogle Scholar
  47. 47.
    Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165CrossRefGoogle Scholar
  48. 48.
    Fox MD, Zhang D, Snyder AZ et al (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283CrossRefGoogle Scholar
  49. 49.
    Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905CrossRefGoogle Scholar
  50. 50.
    Yan CG, Craddock RC, Zuo XN et al (2013) Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 80:246–262CrossRefGoogle Scholar
  51. 51.
    Zuo XN, Anderson JS, Bellec P et al (2014) An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 1:140049Google Scholar
  52. 52.
    He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419CrossRefGoogle Scholar
  53. 53.
    Mechelli A, Friston KJ, Frackowiak RS et al (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310CrossRefGoogle Scholar
  54. 54.
    Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504CrossRefGoogle Scholar
  55. 55.
    Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336CrossRefGoogle Scholar
  56. 56.
    Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069CrossRefGoogle Scholar
  57. 57.
    Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159CrossRefGoogle Scholar
  58. 58.
    Gong G, Rosa-Neto P, Carbonell F et al (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693CrossRefGoogle Scholar
  59. 59.
    van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786CrossRefGoogle Scholar
  60. 60.
    Zuo XN, Xing XX (2014) Test–retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118CrossRefGoogle Scholar
  61. 61.
    Zuo XN, Xu T, Jiang L et al (2013) Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 65:374–386CrossRefGoogle Scholar
  62. 62.
    Jiang L, Xu T, He Y et al (2014) Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Struct Funct. doi: 10.1007/s00429-014-0795-8 Google Scholar
  63. 63.
    Zang YF, He Y, Zhu CZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91CrossRefGoogle Scholar
  64. 64.
    Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141CrossRefGoogle Scholar
  65. 65.
    Zuo XN, Di Martino A, Kelly C et al (2010) The oscillating brain: complex and reliable. Neuroimage 49:1432–1445CrossRefGoogle Scholar
  66. 66.
    Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400CrossRefGoogle Scholar
  67. 67.
    Zuo XN, Kelly C, Di Martino A et al (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043CrossRefGoogle Scholar
  68. 68.
    Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefGoogle Scholar
  69. 69.
    Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258CrossRefGoogle Scholar
  70. 70.
    Zuo XN, Kelly C, Adelstein JS et al (2010) Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage 49:2163–2177CrossRefGoogle Scholar
  71. 71.
    Zuo XN, Ehmke R, Mennes M et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875CrossRefGoogle Scholar
  72. 72.
    Destrieux C, Fischl B, Dale A et al (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15CrossRefGoogle Scholar
  73. 73.
    Wu X, Xu L, Yao L (2014) Big data analysis of the human’s functional interactions based on fMRI. Chin Sci Bull 59:5059–5065CrossRefGoogle Scholar
  74. 74.
    Loewe K, Grueschow M, Stoppel CM et al (2014) Fast construction of voxel-level functional connectivity graphs. BMC Neurosci 15:78CrossRefGoogle Scholar
  75. 75.
    Liao W, Wu GR, Xu Q et al (2014) DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis. Brain Connect. doi: 10.1089/brain.2014.0253 Google Scholar
  76. 76.
    Bowman FD (2014) Brain imaging analysis. Annu Rev Stat Appl 1:61–85Google Scholar
  77. 77.
    Xue SW, Weng XC, He S et al (2013) Similarity representation of pattern-information fMRI. Chin Sci Bull 58:1236–1242CrossRefGoogle Scholar
  78. 78.
    Yang Z, Zuo XN, Wang P et al (2012) Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks. Neuroimage 63:403–414CrossRefGoogle Scholar
  79. 79.
    Yang Z, LaConte S, Weng X et al (2008) Ranking and averaging independent component analysis by reproducibility (RAICAR). Neuroimage 63:403–414CrossRefGoogle Scholar
  80. 80.
    Kapur S, Phillips AG, Insel TR (2013) Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 17:1174–1179CrossRefGoogle Scholar
  81. 81.
    Yang Z, Chang C, Xu T et al (2012) Connectivity trajectory across lifespan differentiates the precuneus from the default network. Neuroimage 89:45–56CrossRefGoogle Scholar
  82. 82.
    Yang Z, Xu Y, Xu T et al (2014) Brain network informed subject community detection in early-onset schizophrenia. Sci Rep 4:5549Google Scholar
  83. 83.
    Castellanos FX, Di Martino A, Craddock RC et al (2013) Clinical applications of the functional connectome. Neuroimage 80:527–540CrossRefGoogle Scholar
  84. 84.
    Dosenbach NU, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361CrossRefGoogle Scholar
  85. 85.
    Collin G, van den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist 19:616–628CrossRefGoogle Scholar
  86. 86.
    Cao M, Wang JH, Dai ZJ et al (2014) Topological organization of the human brain functional connectome across the lifespan. Dev Cogn Neurosci 7:76–93CrossRefGoogle Scholar
  87. 87.
    Betzel RF, Byrge L, He Y et al (2014) Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102:345–357CrossRefGoogle Scholar
  88. 88.
    Chan MY, Park DC, Savalia NK et al (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci USA 111:E4997–E5006CrossRefGoogle Scholar
  89. 89.
    Yeatman JD, Wandell BA, Mezer AA (2014) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:4932CrossRefGoogle Scholar
  90. 90.
    Gutchess A (2014) Plasticity of the aging brain: new directions in cognitive neuroscience. Science 346:579–582CrossRefGoogle Scholar
  91. 91.
    Di Martino A, Fair DA, Kelly C et al (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83:1335–1353CrossRefGoogle Scholar
  92. 92.
    Nooner KB, Colcombe SJ, Tobe RH et al (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152CrossRefGoogle Scholar
  93. 93.
    Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat 54:507–554CrossRefGoogle Scholar
  94. 94.
    Multicentre Growth Reference Study Group WHO (2009) WHO Child Growth Standards: growth velocity based on weight, length and head circumference: methods and development. World Health Organization, GenevaGoogle Scholar
  95. 95.
    Rigby RA, Stasinopoulos DM (2013) Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Stat Methods Med Res 23:318–332CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ting Xu
    • 1
    • 2
    • 3
  • Zhi Yang
    • 1
    • 2
    • 3
  • Lili Jiang
    • 1
    • 2
    • 3
  • Xiu-Xia Xing
    • 4
  • Xi-Nian Zuo
    • 1
    • 2
    • 3
    • 5
  1. 1.Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
  2. 2.Magnetic Resonance Imaging Research Center, Institute of PsychologyChinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Functional Connectome and Development, Institute of PsychologyChinese Academy of SciencesBeijingChina
  4. 4.Department of Applied and Computational Mathematics, College of Applied SciencesBeijing University of TechnologyBeijingChina
  5. 5.Faculty of PsychologySouthwest UniversityChongqingChina

Personalised recommendations